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Abstract

Restricting destructive update to values of a distinguished reference type prevents functions from
being polymorphic in the mutability of their arguments. This restriction makes it easier to reason
about program behaviour during transformation, but the lack of polymorphism reduces the expres-
siveness of the language. We present a System-F style core language that uses dependently kinded
proof witnesses to encode information about the mutability and aliasing properties of data, and the
purity of computations. We support mixed strict and lazy evaluation, and use our type system to
ensure that only computations without visible side effects are suspended.

1 Introduction

Suppose we are writing a library that provides a useful data structure such as linked lists.
A Haskell-style definition for the list type would be:

data List a = Nil |Cons (List a)

The core language of compilers such as GHC is based around System-F (Sulzmann et al.,
2007). Here is the translation of the standard map function to this representation, complete
with type abstractions and applications:

map :: ∀a b. (a→ b)→ List a→ List b
map = Λa. Λb. λ ( f : a→ b). λ (list : List a).

case list of
Nil → Nil b
Cons x xs → Cons b ( f x) (map a b f xs)

Say we went on to define some other useful list functions, and then decided that we
need one to destructively insert a new element into the middle of a list. In Haskell, side
effects are carefully controlled and we would need to introduce a monad such as ST
or IO (Launchbury & Peyton Jones, 1994) to encapsulate the effects due to the update.
Destructive update is also limited to distinguished types such as ST Re f and IORe f . We

∗ This article is an expansion of a paper presented at APLAS 2009 in Seoul.
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cannot use our previous list type, so will instead change it to use an IORe f .

data List a = Nil |Cons (IORe f (List a))

Unfortunately, changing the structure of our original data type means that we can no longer
use the previous definition of map, or any other list functions defined earlier. We must go
back and refactor each of these definitions to use the new type. We must insert calls to
readIORe f and use monadic sequencing combinators instead of vanilla let and where-
expressions. However, doing so introduces explicit data dependencies into the program.
This in turn reduces the compiler’s ability to perform optimisations such as deforestation
and the full laziness transform (de Medeiros Santos, 1995), which require functions to
be written in the “pure”, non-monadic style. It appears that we need two versions of our
list type and its associated functions, an immutable version that can be optimised, and a
mutable one that can be updated.

Variations of this problem are also present in ML and O’Caml. In ML, mutability is
restricted to re f and array types (MacQueen, 1991). In O’Caml, record types can have
mutable fields, but variant types cannot (Leroy et al., 2008). Similarly to Haskell, in these
languages we are forced to insert explicit reference types into the definitions of mutable
data structures, which makes them incompatible with the standard immutable ones. This
paper shows how to avoid this problem:

• We present a System-F style core language that uses region variables and region
class constraints to encode mutability polymorphism. This allows arbitrary data to
be mutable without changing the structure of their value types.

• We use call-by-value evaluation as default, but support lazy evaluation via a primitive
suspend operator. We use purity constraints on effect variables to represent the fact
that only pure function applications should be suspended.

• We use dependently kinded witnesses to encode information about mutability and
purity in the core language, and show how they can be used to reason about the
correctness of program optimisations in the presence of destructive update.

• As a natural extension to the above system, we discuss witnesses of no-aliasing
(distinctness), and show how they can be used to improve the scope of the previous
optimisations.

Our goals in program optimisation are similar to those of (Benton & Kennedy, 1999),
but as in (Sulzmann et al., 2007) we use a System-F based core language instead of a
monadic one. Type inference and translation from the source to core language is discussed
in (Lippmeier, 2010). Our work is embodied in the Disciplined Disciple Compiler (DDC),
with Disciple being the name of the language it compiles, and Disciplined invoking the
Type and Effect Discipline of (Talpin & Jouvelot, 1992) which forms the core of our
system. DDC can be obtained from http://ddc.ouroborus.net.

2 Regions, Effects and Purity

In Haskell and ML, references and arrays are distinguished values, and are the only ones
capable of being destructively updated. This means that the structure of mutable data is
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necessarily different from the structure of constant data, which makes it difficult to write
polymorphic functions that act on both. For example, if we use IORe f Int as the type of a
mutable integer and Int as the type of a constant integer, then we would need readIORe f
to access the first, but not the second. On the other hand, if we were to treat all data as
mutable, then every function would exhibit a side effect. This would prevent us from using
code-motion style optimisations that depend on purity.

Instead, we give integers the type Int r, where r is a region variable, and constrain r to
be mutable or constant as needed. Our use of region variables is similar to that by (Talpin
& Jouvelot, 1992), where the variable r is a name for a set of locations in the store where a
run-time object may lie. However, we do not use regions for memory management as per
(Tofte et al., 2006), due to the difficulty of statically determining when objects referenced
by suspended computations can be safely deallocated. We define region variables to have
kind %, and use this symbol because pictorially it is two circles separated by a line, a
mnemonic for “this, or that”. The kind of value types is *, so the Int type constructor has
kind Int :: %→∗. The type of a literal integer such as ‘5’ is:

5 :: ∀(r : %). Int r

In our System-F style language, instantiation corresponds to type (and region) application,
so ‘5’ can be seen as a function that allocates a new integer object into a given region. Note
that unlike (Talpin & Jouvelot, 1992) we do not use allocation effects. This prevents us
from optimising away some forms of duplicated computation, but also simplifies our type
system. This is discussed further in §5. For the rest of this paper we will elide explicit
kind annotations on binders when they are clear from context. Also, note that in this
paper we are primarily discussing the core language of DDC. In most cases, the Disciple
source programs do not need to include region or effect information, as it can be inferred
(Lippmeier, 2010).

2.1 Updating Integers

To update an integer we use the updateInt function which has type:

updateInt :: ∀r1r2. Mutable r1⇒ Int r1→ Int r2
Read r2 ∨ Write r1−→ ()

This function reads the value of its second argument, and uses this to overwrite the first.
As in (Talpin & Jouvelot, 1992) we annotate function types with their latent effects. We
organise effects as a lattice and collect atomic effects with the ∨ operator. We use ⊥ as the
effect of a pure function, and unannotated function arrows are taken to have this effect. We
also use a set-like subtraction operator where the effect σ \σ ′ contains the atomic effects
that appear in σ but not σ ′. We use ! as the kind of effects, so Read has kind Read :: %→ !.
The symbol ! is a mnemonic for “something’s happening!”.

Returning to the type of updateInt, the term Mutable r1 is a region constraint that
ensures that only mutable integers can be updated. When we apply updateInt we must pass
a witness (proof term) that guarantees that this constraint is satisfied, a point we discuss
further in §3.
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2.2 Constancy and Constraint Exclusivity

Suppose that we wish to prevent a particular value from being updated. In this case we add
a Const constraint to the corresponding region variable. For example, we can write:

pi :: Const r⇒ Float r

In our system we intend for the Const and Mutable constraints to have the same meaning
as the const and mutable type qualifiers of C (Foster et al., 1999). However, note that
Haskell-style type class constraints do not provide an equivalent exclusivity property. For
example, suppose we also added a Mutable constraint to the above type:

pi :: Mutable r⇒Const r⇒ Float r

Although this type looks suspect, it is perfectly valid. That is, valid but not useful. We can
write a term that is assigned this type, but such a term cannot be used. To access the inner
Float we would need to pass witnesses that guarantee both the mutability and constancy
of r, and we ensure that both of these cannot exist in the same program. The mechanism
we use to achieve this is discussed in §3. Note that exclusivity of constraints is limited to
constraints on region variables. In the (full) Disciple language there is no way to prevent
the programmer from defining a value type to be, say, an instance of both Fractional and
Integral, as per Haskell.

2.3 Updating Algebraic Data

Along with primitive types such as Int and Float, the definition of an algebraic data type
may also contain region variables. For example, we define our lists as follows:

data List r a = Nil |Cons a (List r a)

This definition is similar to the one from §1 except that we have also applied the List
constructor to a region variable. This variable identifies the region that contains the list
cells, and can be constrained to be constant or mutable as needed. The definition also
introduces data constructors that have the following types:

Nil :: ∀r a. List r a
Cons :: ∀r a. a→ List r a → List r a

In the type of Nil, the fact that r is quantified indicates that this constructor allocates
a new Nil object each time it is applied. Freshly allocated objects do not alias existing
objects, so they can be taken to be in any region. On the other hand, in the type of Cons,
the second argument and return type share the same region variable r, which means the
new cons-cell is allocated into the same region as the existing cells.
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For example, the evaluation of the following expression produces the store objects shown
below.

list :: List r5 (Int r6)
list = Cons r5 (Int r6) (2 r6) (Cons r5 (Int r6) (3 r6) (Nil r5 (Int r6)))

C C N

I I2 3 r

r5

6

list:

As the list cells and integer elements are in different regions, we can give them differing
mutabilities. For example, if the type of list was constrained as follows, then we would be
free to update the integer elements, but not the spine:

list :: Const r5⇒Mutable r6⇒ List r5 (Int r6)

The definition of an algebraic type also introduces a set of update operators, one for each
updatable component of the corresponding value. For our list type, as we could usefully
update the head and tail pointers in a cons-cell, we get:

updateCons,0 :: ∀r a. Mutable r⇒ List r a→ a Write r−→ ()

updateCons,1 :: ∀r a. Mutable r⇒ List r a→ List r a Write r−→ ()

These operators both take a list and a new value. If the list contains an outer cons-cell,
then the appropriate pointer in that cell is updated to point to the new value. If the list is
not a cons, then a run-time error is raised.

2.4 Types with Several Region Variables

Algebraic data types can contain more than one region variable. For example, we could
define a vector of two integers as follows:

data Vec r1 r2 r3 = V (Int r2) (Int r3)
vec = V r5 r6 r7 (9 r6) (5 r7)

V

I I9 5r

r
5

6

vec:

r
7

Note that the outer V constructor is in region r5, while the two integer objects are in re-
gions r6 and r7. Having three region variables in this type gives us three degrees of freedom
for mutability. The first variable r5 is called the primary region variable and corresponds
to the outer constructor of the structure. Constraining this variable to be mutable allows us
to update the pointers so they point to different objects. Constraining r6 or r7 to be mutable
allows us to update the values in the integer objects directly.

Once again, note that all objects in the above structure are potentially mutable. Also,
note that we do not need to modify the shape of their types, such as by inserting Re f
constructors, to achieve this. We call this property arbitrary destructive update.
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2.5 Laziness and Purity Constraints

Although we use call-by-value evaluation as the default, we can also suspend the evaluation
of an arbitrary function application using the suspend operator:

suspend :: ∀a b e. Pure e ⇒ (a e→ b)→ a→ b

The suspend operator takes a parameter function of type a e→ b, its argument of type a,
and defers the application by building a thunk at runtime. When the value of the thunk is
demanded, the contained function will be applied to its argument, yielding a result of type
b. As per (Launchbury, 1993), values are demanded when they are used as the function in
an application, or are inspected by a case-expression or primitive operator such as update.
The constraint Pure e indicates that only function applications that do not exhibit visible
side effects may be suspended.

As usual, once an application has been suspended, determining when it will finally be
evaluated can be very difficult. Adding the purity constraint ensures that programs using
laziness return predictable results, independent of when their thunks happen to be forced.
This makes code analysis substantially easier, for both the programmer and compiler.
Note that in the semantics of a purely functional lazy language such as Haskell, every
function application is automatically suspended, and thus comes with its own implicit
purity constraint. By making both suspension and purity explicit, we gain another degree
of freedom, which allows us to support impure features such as arbitrary destructive update
as well.

3 Witnesses and Witness Construction

We use dependently kinded proof witnesses to encode information about mutability and
purity in the core language. A witness is a special type that can occur in the program being
evaluated, and its occurrence guarantees a particular property of the program. The System-
Fc (Sulzmann et al., 2007) language uses a similar mechanism to encode information about
non-syntactic type equality. Dependent kinds were introduced by the Edinburgh Logical
Framework (LF) (Avron et al., 1989) which uses them to encode logical rules.

Although our formal operational semantics manipulates witnesses during reduction, in
practice they are only used to reason about the program during compilation, and are not
needed at runtime. Our compiler erases witnesses before code generation, along with all
other type information.

3.1 Region Handles

The first witnesses we discuss are the region allocation witnesses ρ . Syntactically, this
expression consists of two parts. The plain ρ is a label (name) for a particular region in
the store, and the underline turns the label into a type. Region allocation witnesses are also
called region handles and they are introduced into the program with the letregion r in t
expression. The reduction of this expression allocates a fresh label ρ and substitutes its
handle ρ for all occurrences of the variable r in t. To avoid problems with variable capture
we require all bound variables r in the initial program to be unique. Although region



ZU064-05-FPR Main 20 July 2010 18:2

Witnessing Mutability, Purity and Aliasing for Program Optimisation 7

handles are not needed at runtime, we can imagine them to be operational descriptions
of physical regions of the store, perhaps incorporating a base address and a range. As an
example, the following function adds two to its argument, while storing an intermediate
value in the region r3.

addTwo :: ∀r1 r2. Int r1
Read r1−→ Int r2

addTwo = Λr1 r2. λ (x : Int r1).
letregion r3 in succ r3 r2 (succ r1 r3 x)

This function makes use of the primitive succ function that reads its integer argument
and produces a new value into a given region:

succ :: ∀r1 r2. Int r1
Read r1−→ Int r2

The following reduction illustrates the operation of addTwo. We write machine states as
H; t where H is the store and t is the term being reduced. For now, we will say that the store
contains bindings written l

ρ7→ d where l is an abstract location, d is the data contained at
that location, and ρ is the label of the region that binding belongs to. We will discuss the
form of data more precisely in §4.2. The store also contains plain region labels ρ which
indicate that the corresponding region has been allocated and is ready to have bindings
added to it.

...
∗−→ ρ5 ; addTwo ρ5 ρ5 (23 ρ5)

−→ ρ5, l1
ρ57→ 23 ; addTwo ρ5 ρ5 l1

∗−→ ρ5, l1
ρ57→ 23 ; letregion r3 in succ r3 ρ5 (succ ρ5 r3 l1)

−→ ρ5, l1
ρ57→ 23, ρ6 ; succ ρ6 ρ5 (succ ρ5 ρ6 l1)

∗−→ ρ5, l1
ρ57→ 23, ρ6, l2

ρ67→ 24 ; succ ρ6 ρ5 l2
−→ ...

At the beginning, region ρ5 has already been allocated, and the reduction of (23 ρ5) adds
a new binding into the heap. The letregion expression allocates a fresh region label ρ6 and
its handle ρ6 is substituted for r3. Note the phase distinction between region variables
rn and region handles ρn. Region handles are bound by region variables. As no regions
exist in the store before a program starts, region handles cannot not occur in the initial
program. Also, as letregion simultaneously allocates a region and introduces its handle,
the occurrence of a handle in the program guarantees the fact that the corresponding region
has been created and is ready to have bindings added into it. To say this another way: the
region handle “witnesses” the fact that the corresponding region has been created.

Returning to the definition of addTwo, note that although the outer call to succ reads a
value in r3, this effect is not observable by calling functions. This means it can be masked
and not included in the type signature. This similar to system of (Talpin & Jouvelot, 1992).

3.2 Witnesses of Constancy and Mutability

The constancy or mutability of values in a particular region is encoded by the witnesses
const ρ and mutable ρ . Once again, these are types that cannot occur in the initial program.
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Instead, they are created with the MkConst and MkMutable witness type constructors,
which have the following kinds:

MkConst :: Π(r : %). Const r
MkMutable :: Π(r : %). Mutable r

Both constructors take a region handle and produce the corresponding witness. We use
the dependent binding operator Π because while r is a (region) type, the body of the
abstraction, Const r is a kind. This gives us “dependent kinds”. This can be contrasted
to systems with “dependent types”, which have functions from values to types.

To ensure that both const ρn and mutable ρn for a particular ρn cannot occur in the same
program, we require the mutability (or constancy) of a region to be set at the point it is
created. This is done by extending the letregion construct with an optional set of witness
bindings. For example, the following function computes the length of a list by destructively
incrementing a local accumulator, then copying out the final value.

length :: ∀a r1 r2. List r1 a
Read r1−→ Int r2

length = Λa r1 r2. λ (list : List r1 a).
letregion r3 with {w = MkMutable r3} in
let (acc : Int r3) = 0 r3

(length′ : ...)
= λ (xx : List r1 a).

case xx of
Nil → copyInt r3 r2 acc
Cons xs → let ( : ()) = incInt r3 w acc

in length′ xs
in length′ list

where

copyInt :: ∀r1 r2. Int r1
Read r1−→ Int r2

incInt :: ∀r1. Mutable r1⇒ Int r1
Read r1∨ Write r1−→ ()

The set after the with-keyword binds the type expression that produces a witness of
mutability for r3. Similarly to the case with region handles, there is a phase distinction
between type expressions that construct witnesses, like MkMutable r3, and the actual
normal form witnesses, like mutable ρ3. In our reduction semantics the former reduces
to the latter, and only the former may appear in the initial program text. We discuss the
details of reduction in §4.

To ensure that “rogue” witnesses cannot be created, we place three simple syntactic
restrictions on how the constructors MkMutable and MkConst may be used:

1. They may only appear in the set of witness bindings associated with a letregion.
2. Either MkMutable or MkConst may be used in the set, but not both.
3. If the letregion binds a region variable r, then only that region variable may be used

in the associated set.

An alternative to these rules would be to define two separate forms of letregion, perhaps
letconstregion and letmutableregion. However, we stick with using a generic letregion,
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and a set of witness bindings, because it will be easier to extend with the witnesses of
no-aliasing discussed in §6.

Returning to the definition of length, note that as we call incInt to destructively in-
crement the integer value in r3, this region must be mutable. This fact is encoded by the
Mutable constraint in the type for incInt, which we satisfy by passing in our witness w. If
the region r3 happened to be constant instead of mutable, then by the syntactic restrictions
on letregion, we would not have a suitable witness of mutability to pass to incInt. This
provides the constraint exclusivity property discussed in §2.2

3.3 Laziness and Witnesses of Purity

As discussed in §2.5, although our language uses call-by-value evaluation as default, we
can also suspend an arbitrary function application with the suspend operator:

suspend :: ∀a b e. Pure e ⇒ (a e→ b)→ a→ b

The constraint Pure e indicates that only observably pure applications may be suspended,
so when we call suspend we must pass a witness to this fact. Witnesses of purity are
written pure σ where σ is some effect. They can be created with the MkPuri f y witness
constructor, which has the following kind:

MkPuri f y :: Π(r : %). Const r→ Pure (Read r)

This constructor takes a witness that a particular region is constant, and produces a witness
that a read from it is pure. Reads of constant regions are pure because it does not matter
when the read takes place, the same value will be returned each time. Here is an example
that uses MkPuri f y:

lazySucc :: ∀r1 r2. Const r1⇒ Int r1
Read r1−→ Int r2

lazySucc = Λr1 r2 (w : Const r1). λ (x : Int r1).
suspend (Int r1) (Int r2) (Read r1) (MkPuri f y r1 w)

(succ r1 r2) x

This function simply suspends an application of succ to its integer argument. As the argu-
ment appears in a region named r1, computing its successor causes the effect Read r1. For
this effect to be pure, we require r1 to be constant, hence the Const r1 constraint in the type
of lazySucc. A caller of lazySucc must pass a witness that satisfies this constraint, which
we bind to w, and then use to construct a witness that Read r1 is pure. We call this process
purifying an effect, and the constraint Const r1 is called the purifier of Read r1.

Alternatively, if the effect of the application to be suspended is simply ⊥, then we can
introduce a witness that it is pure by using the following witness constructor:

MkPureBot :: Pure ⊥

Note that there are several ways of writing the effect of a pure function. Firstly, the
effect ⊥ is manifestly pure, as it contains no atomic effect terms. However, we can also
treat any other effect as pure provided we can produce a witness of the appropriate kind.
For example, Read r5 is pure if we can produce a witness of kind Pure (Read r5). This
relationship is encoded by our ObsPure typing rule, which we discuss further in §4.6
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3.4 Witness Joining and Higher Order Functions

Purity constraints extend naturally to higher order functions. For example, here is a lazy
version of the map function that constructs the first element of the resulting list when it is
called, but leaves subsequent elements to be constructed when they are demanded.

lazyMap :: ∀a b r1 r2 e. Const r1⇒ Pure e⇒ (a e→ b)→ List r1 a
Read r1∨e−→ List r2 b

lazyMap
= Λa b r1 r2 e (w1 : Const r1) (w2 : Pure e).

λ ( f : a e→ b) (list : List r1 a).
case list of

Nil → Nil r2 b
Cons x xs →Cons r2 b ( f x)

(suspend (List r1 a) (List r2 b) (Read r1∨ e)
(MkPureJoin (Read r1) e (MkPuri f y r1 w1) w2)
(lazyMap a b r1 r2 e w1 w2 f ) xs)

The inner case-expression in this definition has the effect Read r1∨ e. The first part is due
to inspecting the input list, and the second is due to the application of the argument function
f to the element x. However, as the recursive call to lazyMap is suspended, lazyMap itself
must be pure. We prove this fact by using two existing witnesses. The first, w1, guarantees
that r1 is constant, and by applying MkPuri f y to it we get a witness that Read r1 is pure.
The second, w2, guarentees that the effect bound to the variable e is pure. We join these
two witnesses into a compound one with the following constructor:

MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1→ Pure e2→ Pure (e1∨ e2)

In the definition of lazyMap, the use of MkPureJoin gives the witness passed to suspend
the following kind, which satisfies the purity constraint:

MkPureJoin (Read r1) e (MkPuri f y r1 w1) w2 :: Pure (Read r1∨ e)

3.5 Explicit effect masking

In the previous section, although we were able to construct a witness that lazyMap was
pure, its type signature still contained the effect term Read r1 ∨ e. Alternatively, we can
give lazyMap a manifestly pure effect by using explicit effect masking:

lazyMap′ :: ∀a b r1 r2 e. Const r1⇒ Pure e⇒ (a e→ b)→ List r1 a→ List r2 b
lazyMap′

= Λa b r1 r2 e (w1 : Const r1) (w2 : Pure e).
λ ( f : a e→ b) (list : List r1 a).
mask MkPureJoin (Read r1) e (MkPuri f y r1 w1) w2 in
case list of

Nil → Nil r2 b
Cons x xs →Cons r2 b ( f x)

(suspend (List r1 a) (List r2 b) ⊥
MkPureBot
(lazyMap′ a b r1 r2 e w1 w2 f ) xs)
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The masking is achieved with the mask δ in t expression, which contains a witness of
purity δ and a body t. The type and value of this expression is the same as for t, but its
effect is the effect of t minus the terms which δ proves are pure. As lazyMap′ itself is now
manifestly pure, we can use the MkPureBot constructor to satisfy the purity constraint on
suspend.

4 Language

We are now in a position to formally define our core language and its typing rules. The
structure of the language is given in Fig. 1. Most has been described previously, so we only
discuss the aspects not covered so far. Starting at the top of the strata we use super-kinds to
classify witness kind constructors, and to ensure they are applied to the right kind of type.
For our three baked-in constructors we have the following super-kinds:

Const :: %→ ♦
Mutable :: %→ ♦
Pure :: ! → ♦

The first signature says that Const may only be applied to a region type, such as with
Const r1. The result of a witness kind constructor is always ♦, pronounced “prop”. A
signature such as Const :: % → ♦ is read “a witness classified by Const guarantees a
property of a region”. We use �, pronounced “box” as the super-kind for kinds that do
not encode such a property, such as % and ∗→ ∗.

We use use τi as binders for value types, σi as binders for effect types, and δi as binders
for type expressions that construct witness types. ∆i refers to a normal form witness such
as ρ , const ρ , mutable ρ or pure σ . We use ϕi to refer to an arbitrary type expression.

The values in our term language are identified with v. Weak values, v◦, consist of the
values as well as suspended function applications suspend ϕ v◦1 v◦2. A suspension is only
forced when its (strong) value is demanded by using it as the function in an application, the
discriminant of a case expression, or as an argument to a primitive operator such as update.
Store locations li are discussed in §4.2. We require the alternatives of a case-expression to
be exhaustive, and data constructors, suspend and update to be fully applied. The other
aspects of our term language are standard. Recursion can be introduced via fix in the usual
way, but we omit it to save space.

4.1 Typing Rules

In Fig. 2 the judgement form Γ |Σ `K κ :: ω reads: with type environment Γ and store
typing Σ, kind κ has super-kind ω . The store typing is an abstract model of the current
state of the store, and is discussed further in §4.5. KsAbs is the rule for dependent kind
abstraction. Note that a kind signature such as %→ ∗ is desugared to this form, resulting
in Π( : %).∗.

In Fig. 3 the judgement form Γ |Σ `T ϕ :: κ reads: with type environment Γ and store
typing Σ, type ϕ has kind κ . Rules KiApp, KiVar and KiAll are standard. Note that KiJoin
and KiBot are defined on effect types only. The remainder of the rules give kinds for
our “baked-in” constructors. We have included List and Int as representative data type
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Symbol Classes
a, r, e, w → (type variables) T → (data type constructors)
x, y → (value variables) K → (data constructors)
l → (store locations) ρ → (region labels)

Super Kinds
ω ::= � | ♦ | κ → ω

Kinds
κ ::= κ ϕ | Π(a : κ1). κ2 (kinds)
| ∗ | % | ! (atomic kinds)
| Const | Mutable | Pure (witness kind constrs)

Types
ϕ , τ , σ , δ , ∆

::= a | ∀(a : κ). τ | ϕ1 ϕ2 (types)
| (→) | () | T (data type constrs)
| σ1∨σ2 | ⊥ | Read | Write (effect type constrs)
| MkConst |MkMutable |MkPure |MkPuri f y |MkPureJoin (witness type constrs)
| ρ | const ϕ | mutable ϕ | pure σ (witness types)

Terms
t ::= x | v | t ϕ | t1 t2 | letregion r with {w = δ} in t | K ϕ t
| case t of K x : τ → t ′ | updateK,i ϕ t1 t2 | suspend ϕ t1 t2
| mask δ in t

v◦,u◦ ::= v | suspend ϕ v◦1 v◦2 (weak values)
v, u ::= l | () | Λ(a : κ). t | λ (x : τ). t (strong values)

Derived Forms

κ1→ κ2
def= Π( : κ1). κ2 let (x : τ) = t1 in t2

def= (λ (x : τ). t2) t1

κ ⇒ τ
def= ∀( : κ). τ letregion r in t def= letregion r with /0 in t

Type Environment Store Typing
Γ ::= a : κ | x : τ | Γ1, Γ2 Σ ::= l : τ, ρ | const ρ | mutable ρ | r ∼ ρ | Σ1, Σ2

Fig. 1. Core Language

constructors, though in a full language the programmer would be able to define their own.
The function type constructor (→) and the unit type constructor () are special because they
are referred to directly in the typing rules of Fig. 4. We discuss the kinds of witness types
in §4.5.

In Fig. 4 the judgement form Γ | Σ ` t :: τ ; σ reads: with type environment Γ and
store typing Σ, term t has type τ and effect σ . Rules TyVar through TyApp are standard.
In TyLetRegion the premise “δi well formed” refers to the syntactic restrictions on the
introduced witnesses that were discussed in §3.2.

Note the premise r /∈ f v(τ), also in TyLetRegion. In an entirely strict language this
premise would allow us to allocate storage for the region r in a stack-like manner, freeing
it once the body of the letregion had finished evaluating (Tofte et al., 2006). This would
be possible because when the variable r does not appear in the type of the result (or in
the type environment), objects in this region are not reachable from the calling context.
This is not true in a language that supports laziness, such as ours. In our case a “value”
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Γ |Σ `K κ :: ω

Γ |Σ `K κ1 :: κ11→ ω Γ |Σ `K ϕ :: κ11

Γ |Σ `K κ1 ϕ :: ω
(KsApp)

κ ∈ {∗, %, !}
Γ |Σ `K κ :: �

(KsAtom)

Γ |Σ `K κ1 :: ω1 Γ, a : κ1 |Σ `K κ2 :: ω2

Γ |Σ `K Π(a : κ1).κ2 :: ω2
(KsAbs)

Γ |Σ `K Const :: %→ ♦ Γ |Σ `K Mutable :: %→ ♦ Γ |Σ `K Pure :: !→ ♦

Fig. 2. Super-kinds of Kinds

Γ |Σ `T ϕ :: κ

Γ |Σ `T ϕ1 :: Π(a : κ1).κ2 Γ |Σ `T ϕ2 :: κ1

Γ |Σ `T ϕ1 ϕ2 :: κ2[ϕ2/a]
(KiApp) Γ, a : κ |Σ `T a :: κ (KiVar)

Γ |Σ `K κ1 :: ω1 Γ, a : κ1 |Σ `T τ2 :: κ2

Γ |Σ `T ∀(a : κ1). τ2 :: κ2
(KiAll)

Γ |Σ `T σ1 :: ! Γ |Σ `T σ2 :: !
Γ |Σ `T σ1∨σ2 :: !

(KiJoin) Γ |Σ `T ⊥ :: ! (KiBot)

Γ |Σ `T (→) :: ∗→ ∗→ !→∗ Γ |Σ `T () :: ∗
Γ |Σ `T List :: %→∗→ ∗ Γ |Σ `T Int :: %→∗
Γ |Σ `T Read :: %→ ! Γ |Σ `T Write :: %→ !
Γ |Σ `T MkConst :: Π(r : %). Const r
Γ |Σ `T MkMutable :: Π(r : %). Mutable r Γ |Σ `T MkPureBot :: Pure ⊥

Γ |Σ `T MkPuri f y :: Π(r : %). Const r→ Pure (Read r)
Γ |Σ `T MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1→ Pure e2→ Pure(e1∨ e2)

Fig. 3. Kinds of Types

with a type such as Int r1 may be represented as a suspended function application, and
the suspension may contain references to objects in regions besides r1. However, we have
included the r /∈ f v(τ) premise anyway because it makes the proof of soundness easier.
This is discussed further in §4.7.

In TyCase, the act of inspecting the discriminant causes the effect Read ϕ , where ϕ

corresponds to the data type’s first (primary) region variable. The primary variable corre-
sponds to the region containing the outer constructor of the object, which was discussed in
§2.4.

In TyUpdate, we must pass the update operator a witness δ of kind Mutable ϕ . This
witness proves that the region holding the constructor to be updated is indeed mutable.
Performing the update causes a write effect on this same region. Note that we use the
symbol ϕ to represent the region as it can be instantiated by both region variables r and
handles ρ . The meta-function ctorTypes(T ) returns a set containing the types of all data
constructors associated with a type constructor T .
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Γ |Σ ` t :: τ ; σ

Γ, x : τ |Σ ` x :: τ ; ⊥ (TyVar) Γ |Σ, l : τ ` l :: τ ; ⊥ (TyLoc)

Γ, a : κ |Σ ` t2 :: τ2 ; σ2

Γ |Σ ` Λ(a : κ). t2 :: ∀(a : κ). τ2 ; σ2
(TyAbsT)

Γ |Σ ` t1 :: ∀(a : κ11).ϕ12 ; σ1 Γ |Σ `T ϕ2 :: κ11

Γ |Σ ` t1 ϕ2 :: ϕ12[ϕ2/a] ; σ1[ϕ2/a]
(TyAppT)

Γ, x : τ1 |Σ ` t :: τ2 ; σ

Γ |Σ ` λ (x : τ1). t :: τ1
σ→ τ2 ; ⊥

(TyAbs)

Γ |Σ ` t1 :: τ11
σ→ τ12 ; σ1 Γ |Σ ` t2 :: τ11 ; σ2

Γ |Σ ` t1 t2 :: τ12 ; σ1∨σ2∨σ
(TyApp)

δi well formed Γ |Σ `T δi :: κi
i

Γ |Σ `K κi :: ♦
i

r /∈ f v(τ) Γ, r : %, wi : κi |Σ ` t :: τ ; σ

Γ |Σ ` letregion r with {wi = δi} in t :: τ ; σ
(TyLetRegion)

Γ |Σ ` t :: τi[ϕ/r ϕ ′/a] ; σi
i←0..n

Γ |Σ `T ϕ :: % K :: ∀(r : %).∀(a : κ).τ → T r a ∈ ctorTypes(T )

/0 |Σ ` K ϕ ϕ ′ t :: T ϕ ϕ ′ ; σ0∨σ1...∨σn
(TyData)

Γ |Σ ` t :: T ϕ ϕ ′ ; σ Γ |Σ ` pi→ ti :: T ϕ ϕ ′→ τ ; σ ′i
i← 0..n

Γ |Σ ` case t of p→ t :: τ ; σ ∨Read ϕ ∨σ ′0∨σ ′1...∨σ ′n
(TyCase)

Γ |Σ `T δ :: Mutable ϕ Γ |Σ ` t ′ :: τi[ϕ/r ϕ ′/a] ; σ ′

Γ |Σ ` t :: T ϕ ϕ ′ ; σ K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T )

Γ |Σ ` updateK,i ϕ ϕ ′ δ t t ′ :: () ; σ ∨σ ′∨Write ϕ
(TyUpdate)

Γ |Σ ` t1 :: τ11
σ→ τ12 ; σ1 Γ |Σ ` t2 :: τ11 ; σ2 Γ |Σ `T δ :: Pure σ

Γ |Σ ` suspend τ11 τ12 σ δ t1 t2 :: τ12 ; σ1∨σ2
(TySuspend)

Γ |Σ ` t :: τ ; σ Γ |Σ `T δ :: Pure σ ′

Γ |Σ ` mask δ in t :: τ ; σ \σ ′
(TyMaskPure)

Γ |Σ ` () :: () ; ⊥ (TyUnit)

Γ |Σ ` p→ t :: τ → τ ′ ; σ

θ = [ϕ/r ϕ ′/a]
K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T ) Γ, x : θ(τ) |Σ ` t :: τ ′ ; σ

Γ |Σ ` K x→ t :: T ϕ ϕ ′→ τ ′ ; σ
(TyAlt)

Fig. 4. Types of Terms
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In TySuspend, we must pass the suspend operator a witness δ of kind Pure σ . This
proves that the application to be suspended is pure. Note that although the application
itself must be pure, the expressions that compute the function and argument need not be,
hence the effect term σ1∨σ2.

TyMaskPure allows us to explicitly mask an effect, provided we can produce a witness
of its purity. This was discussed in §3.5.

4.2 Dynamic Semantics

During evaluation, all updatable data is held in the store (also known as the heap), which
is defined in Fig. 5. The store contains bindings that map abstract store locations to store
objects. Each store object consists of a constructor tag CK and a list of weak values v◦.
Each binding is annotated with a region label ρ that specifies the region it belongs to.

The store also contains properties that specify how bindings in the various regions may
be used. Properties are named after our witnesses from Fig. 1, and are ρ , (const ρ) and
(mutable ρ). When used as a property, a region handle ρ indicates that the corresponding
region has been created and is ready to have bindings allocated into it. The last two indicate
whether a binding in a region may be treated as constant, or updated. Note the difference
between witnesses and properties. Although the two are written similarly, witnesses occur
in the term being reduced, whereas properties occur in the store. In our notation, witnesses
are always written with an underline, while properties are not.

l → (store location)
ρ → (region handle)
o ::= ρ | const ρ | mutable ρ (property)
µ ::= CK v◦ (store object)

H : { l
ρ7→ µ } + { o } (store)

Fig. 5. Stores and Store Objects

4.3 Witness Construction

Fig. 6 gives the relationship between properties, witnesses and witness constructors. The
judgement form H;δ  δ ′ reads: with store H, witness δ produces witness δ ′. Opera-
tionally, properties can be imagined as protection flags on regions of the store — much like
the read, write and execute bits in a hardware page table. The witness constructors MkConst
and MkMutable test for these properties, producing a type-level artefact showing that the
property was set. If we try to evaluate either constructor when the associated property is not
set, then the evaluation becomes stuck. Note that although we use this notion of type-level
“evaluation” in our semantics, it is not needed at runtime. In our compiler, witnesses are
erased during code generation along with all other type information.

The axiom EwPureBot produces a witness that ⊥ is a pure effect. We need this axiom
because although witness constructors like MkPureBot may appear in the source program,
witnesses like pure ⊥ may not. The rules EwPurify and EwPureJoin are used to construct
a new witness from existing ones. The first takes a witness that ρ is constant, and produces
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H ; δ  δ ′

Ew ::= [ ] |MkPuri f y ρ Ew |MkPureJoin σ1 σ2 Ew Ew

H ; δ  δ ′

H ; Ew[δ ] Ew[δ ′]
(EwContext)

H[ const ρ ] ; MkConst ρ  const ρ (EwConst)

H[ mutable ρ ] ; MkMutable ρ  mutable ρ (EwMutable)

H ; MkPureBot  pure ⊥ (EwPureBot)

H ; MkPuri f y ρ const ρ  pure (Read ρ) (EwPurify)

H ; MkPureJoin σ1 σ2 pure σ1 pure σ2  pure (σ1∨σ2) (EwPureJoin)

Fig. 6. Witness Construction

a witness that a read from this region is pure. The second takes witnesses that two separate
effects are pure, and produces a witness that their sum is pure.

4.4 Term Evaluation

In Fig. 7 the judgement form H ; t −→H ; t ′ reads: in heap H term t reduces to a new heap
H ′ and term t ′. In EvLetRegion the propOf meta-function maps a witness to its associated
store property. Also, note that the second premise of EvLetRegion is always true, and is
used to convert the given witness expressions δi to their associated witnesses ∆i. EvAlloc
allocates a new binding into the store, which is tagged with the region label applied to its
constructor. EvUpdateBind says that to update the value of a binding in region ρ we must
pass an appropriate witness mutable ρ , and the corresponding property (mutable ρ) must
be present in the store. In our soundness theorem discussed in §4.6, the fact that an update
expression of this form can always progress ensures that the binding is indeed mutable.
Similarly, in EvSuspendApp we must supply a witness pure σ that the application to be
suspended is pure. EvUpdateFail handles the case where we try to update a binding using
an update operator for the wrong data constructor. As different constructors can have a
different number of parameters, of different types, we halt the program with the special
value “fail”. EvMask shows that a mask expression has no operational effect, besides
requiring an appropriate witness of purity.

4.5 Store typings

The store typing Σ models the state of the heap as the program progresses, and was defined
in Fig. 1. The store typing contains the type of each store location, along with witnesses to
the current set of store properties. It also contains region similarity bindings r ∼ ρ which
we use to account for the fact that region handles are substituted for region variables in our
proof of Preservation. This is discussed further in §4.7.

We say that the store typing models the store, and write Σ |= H, when all members of
the store typing correspond to members of the store. Conversely, we say the store is well
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H ; t −→ H ; t ′

Ev ::= [ ] | Ev ϕ | Ev t2 | v Ev | case Ev of alt
| K ϕ Ev t1 ... | K ϕ v◦ Ev ... | ...
| updateK,i ϕ Ev t2 | updateK,i ϕ l Ev

| suspend ϕ Ev t2 | suspend ϕ v Ev

H ; t −→ H ′ ; t ′

H ; Ev[t]−→ H ′ ; Ev[t ′]
(EvContext)

H ; (Λ(a :: κ). t) ϕ −→ H ; t[ϕ/a] (EvTAppAbs)

H ; (λ (x :: τ). t) v◦ −→ H ; t[v◦/x] (EvAppAbs)

H ′ = H, ρ, propOf(∆i) H ′ ; δi[ρ/r] ∆i ρ fresh

H ; letregion r with {wi = δi} in t −→ H ′ ; t[ρ/r ∆i/wi]
(EvLetRegion)

H[ρ] ; K ρ ϕ v◦ −→ H, l
ρ7→CK v◦ ; l l fresh (EvAlloc)

H[l
ρ7→CK v◦] ; case l of ...K x→ t...−→ H ; t[v◦/x] (EvCase)

H[ mutable ρ, l
ρ7→CK v◦] ; updateK,i ρ ϕ mutable ρ l u◦

−→ H, l
ρ7→CK v◦0..u

◦
i ..v
◦
n ; () (EvUpdateBind)

H[ mutable ρ, l
ρ7→CK v◦] ; updateK′,i ρ ϕ mutable ρ l u◦

−→ H ; fail K 6= K′ (EvUpdateFail)

H ; δ  δ ′

H ; suspend ϕ δ t t ′ −→ H ; suspend ϕ δ ′ t t ′
(EvSuspendWit)

H ; suspend τ τ
′

σ pure σ (λ (x : τ). t) v◦ −→ H ; t[v◦/x] (EvSuspendApp)

H ; δ  δ ′

H ; mask δ in t −→ H ; mask δ ′ in t
(EvMaskWit)

H ; mask pure σ in t −→ H ; t (EvMaskApp)

Fig. 7. Term Evaluation

typed, and write Σ ` H when it contains all the bindings and properties predicted by the
store typing. These are defined formally in the appendix. Both the store and store typing
grow as the program evaluates, and neither bindings, properties or witnesses are removed
once added.

Although most of the typing rules from Figs 2, 3 and 4 simply pass the store typing
through unchanged, it is used in TyLoc from Fig. 4 to determine type of a store location
l. However, as kind expressions can contain types, and hence store locations as well, the
store typing must be a part of all judgement forms.

Store typings are also used in Fig. 8, which gives kinds to witnesses. The judgement
form Γ |Σ `T ∆ :: κ reads: with type environment Γ and store typing Σ, witness ∆ has kind
κ . This is similar to the one in Fig. 3. Importantly, in the first four rules in Fig. 8, when
we give a kind to a witness we require that witness to also be in the store typing. Provided
the store typing models the store, this also means that the corresponding property is in the
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Γ |Σ `T ∆ :: κ

Γ |Σ, ρ `T ρ :: % (KiHandle)

Γ |Σ, const ρ `T const ρ :: Const ρ (KiConst)

Γ |Σ, mutable ρ `T mutable ρ :: Mutable ρ (KiMutable)

Γ |Σ, const ρ `T pure (Read ρ) :: Pure (Read ρ) (KiPurify)

Γ |Σ `T pure ⊥ :: Pure ⊥ (KiPure)

Γ |Σ `T pure σ1 :: Pure σ1 Γ |Σ `T pure σ2 :: Pure σ2

Γ |Σ `T pure (σ1∨σ2) :: Pure (σ1∨σ2)
(KiPureJoin)

Fig. 8. Kinds of Witnesses

store. This is the crux of our soundness proof: when a witness appears in the term, the
corresponding property is guaranteed to be present in the store.

4.6 Soundness

Our proof of soundness is split into Progress and Preservation (subject reduction) theorems
in the usual way.

Progress. If /0 |Σ ` t :: τ ; σ and Σ |= H and Σ ` H and nofab(t) then either t ∈ Value
or for some H ′, t ′ we have (H; t −→ H ′; t ′ and nofab(t ′) or H; t −→ H ′; fail ).

Preservation. If /0 |Σ ` t :: τ ; σ and H; t −→H ′; t ′ and Σ |= H and Σ `H then for some
Σ′,σ ′ we have /0 |Σ′ ` t ′ :: τ ; σ ′ and Σ′ ⊇ Σ and Σ′ |= H ′ and Σ′ ` H ′ and σ ′ vΣ′ σ .

In the Progress Theorem, “nofab” is short for “no fabricated region witnesses”, and
refers to the syntactic constraint discussed in §3.2 that MkConst and MkMutable may only
appear in the witness binding of a letregion, and not elsewhere in the program.

In the Preservation Theorem, note that the latent effect of the term reduces as the pro-
gram progresses. The vΣ relationship on effects is defined in the obvious way, apart from
two points. The first is that we allow region handles to be substituted for region variables
if there is a corresponding r ∼ ρ binding in the store typing. The second is that we add the
following extra rule:

/0 |Σ `T δ :: Pure σ

σ vΣ ⊥
(ObsPure)

This says that if we can construct a witness that a particular effect is pure, then we can
treat it as such. This allows us to erase read effects on constant regions during the proof of
Preservation. It is needed to show that forcing a suspension does not have a visible effect,
and that we can disregard explicitly masked effect terms when entering into the body of a
mask-expression. Formal proofs of Progress and Preservation are given in the appendix.

As mentioned in the previous section, our typing rules ensure that if a witness occurs in
the term being reduced, then it also occurs in the store typing. Provided the store typing
models the store, this also means that the corresponding property is present in the store.
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From the evaluation rules of Fig. 7, the only term that adds properties to the store is
letregion, and when it does, it also introduces the corresponding witnesses into its body.
The well-formedness restriction on letregion guarantees that a witness of mutability and
constancy for the same region cannot be created. This ensures that if we have, say, the
witness const ρ in the term, then there is not a (mutable ρ) property in the store. This
means that bindings in those regions can never be updated, and it is safe to suspend function
applications that read them.

As a final point, note that although we support destructive update of arbitrary data,
we do not suffer the potential unsoundness commonly associated with ML-style mutable
references (Garrigue, 2004). The fact that type abstractions are explicit naturally gives our
language polymorphism-by-name semantics (Leroy, 1993). Polymorphic expressions are
re-evaluated at each use, after call-by-name, and a given mutable object cannot be updated
in an unsound way.

4.7 Allocation and Region Phase Changes

As opposed to the region calculus of (Tofte et al., 2006), we cannot use the region annota-
tions in our program to allocate and deallocate storage in a stack-like manner. To see why
this is, consider the following reduction:

ρ1 ; letregion r2 in let x = 23 r2 in
suspend (Int r2) (Int ρ1) ... (succ r2 ρ1) x

∗−→ ρ1, ρ2, l
ρ27→ 23 ; suspend (Int ρ2) (Int ρ1) ... (succ ρ2 ρ1) l

The initial expression creates a fresh region and allocates a heap binding for the value
23. It then suspends an application of succ to this value. In the resulting expression, note
that although we have eliminated the letregion construct, we have retained a reference to
the new region via heap location l. At this point we cannot simply remove (deallocate) the
binding l

ρ27→ 23 from the heap, as then l would be out of scope.
Although we cannot use region based memory management, we retain the r /∈ f v(τ)

premise in the TyLetRegion rule of Fig. 4. If we had not done this then the initial expression
in the following reduction would be well-typed:

/0 ; letregion r1 in succ r1 r1 (23 r1)
−→ ρ1 ; succ ρ1 ρ1 (23 ρ1)

−→ ρ1, l1
ρ17→ 23, ; succ ρ1 ρ1 l1

−→ ρ1, l1
ρ17→ 23, l2

ρ17→ 24 ; l2

Note that while the initial expression has type Int r, the final one has type Int ρ .
This reveals the phase difference between region variables and region handles. On one
hand, maintaining this difference is convenient when reasoning about the soundness of
optimisations. On the other hand, if we were to permit this example to be well-typed then
we would need to weaken our Preservation theorem so that the result of a reduction only
had to have a type similar to the initial expression. By this we mean that we allow region
handles to be substituted for their corresponding region variables. Note that the effect of an
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expression also undergoes the phase change. Whereas the effect of the initial expression is
Read r1, the effect of the second is Read ρ . In our previous work of (Lippmeier, 2010) we
used the r ∼ ρ elements of the store typing to define similarity judgements for both types
and effects. However, in this work we have chosen to simplify our typing rules and proof
by retaining the r /∈ f v(τ) premise in TyLetRegion and rejecting expressions like the one
above. We still need a similarity judgement for effects, but this is easier to manage, and we
have left the details to the appendix.

4.8 Observation Criterion

The observation criterion says that if the reduction of some expression has an effect, but
that effect is not visible to the calling context, then we can safely ignore it. An example of
this was given in §3.1. Although there is a singular observation criterion, there are multiple
ways of implementing it, depending on our interpretation of “not visible”. For our system
a simple rule is as follows:

Γ |Σ ` t :: τ ; σ r /∈ f vT (Γ) r /∈ f v(τ)
Γ |Σ ` t :: τ ; σ \ (Read r∨Write r)

(TyObs)

This rule says that if an expression has a read or write effect on some region variable
r, but that variable is not free in the type environment or the type of the expression, then
we can remove it from subsequent consideration. The premise r /∈ f vT (Γ) refers to free
variables in type bindings only. For example, we allow a plain r : % to appear in the
environment provided r it is not also free in the τ ′ of any x : τ ′. The reasoning why TyObs
is valid is standard and fashioned after (Talpin & Jouvelot, 1992). As r does not appear
in any type binding in the environment, the term t cannot hold a direct reference to pre-
existing objects in this region. It may hold an indirect reference via a suspended function
application, but as suspended applications must be pure their final values cannot be affected
once the suspension is created. As r does not appear in the return type, we cannot hold a
direct reference to any object in r after the term has finished evaluating.

Although TyObs is valid, we have omitted it from Fig. 4 because our soundness proof
does not cover it. Unlike the other rules, TyObs is not syntax directed, which complicates
both type checking and case analysis in the proof. However, in our practical implementa-
tion it suffices to invoke TyObs only when checking an abstraction, effectively combining
it with TyAbs. Due to this we define a new rule that combines the two:

ri /∈ f vT (Γ)∪ f v(τ1)∪ f v(τ2)
i

Γ, x : τ1 |Σ ` t2 :: τ2 ; σ σ ′ = σ \ (Read ri∨Write ri)
i

Γ |Σ ` λ (x : τ1). t2 :: τ1
σ ′→ τ2 ; ⊥

(TyAbsMask)

Here, we have folded in multiple instances of TyObs so that effects on several region
variables can be masked at the same point. Finally, note that as usual, our proof of “sound-
ness” simply ensures that the reduction of an expression does not “get stuck”. It does not,
say, guarantee that optimising transforms based on masked effect information preserve the
meaning of the original program. Progress and Preservation provide a basic foundation for
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such reasoning, but it is a topic for future work. See for example (Benton et al., 2007) and
(Naumann, 2007) which address this.

5 Sharing, Purity and the Full Laziness Transform

In this section we consider the full-laziness transform (Peyton Jones & Lester, 1995) as an
example optimisation using our system. In the following function, note that if we could
lift the n binding out of the inner function then we could save its recomputation for each
application. We have elided some of the type annotations to make the presentation clearer.

Λr3 e1. λ (g : Int r3
e1→ Int r3).

letregion r4 with w1 = MkConst r4 in
let (xs : List r4 (Int r3)) = ...

f = λy. let n = g (length xs) in n + y
in map f xs

We will specialise this function for the case when g is pure. This will allow us to perform
the lift, but as we cannot guarantee that f will be applied at least once, we wrap the lifted
expression in a suspension to guard against the case where it diverges. Doing this requires
a witness that the n binding is pure. We will assume that length has the same type as in
§3.2, namely:

length :: ∀a r1 r2. List r1 a
Read r1→ Int r2

As type of the list xs is List r4 (Int r3), applying length to it causes the effect Read r4.
Applying the function g to the result then causes the effect e1, so the effect of the whole n
binding is Read r4∨ e1. We know that Read r4 is pure due to the witness MkConst r4. We
can then require e1 to be pure by adding a new type parameter that binds an appropriate
witness of purity. This ensures that the specialised version of our function can only be
applied to an argument that meets this constraint. The result of the transform is as follows:

Λr3 e1. Λ(w2 : Pure e1). λ (g : Int r3
e1→ Int r3).

letregion r4 with w1 = MkConst r4 in
let (xs : List r4 (Int r3)) = ...

n = suspend (MkPureJoin (MkPuri f y r4 w1) w2) (λ . g (length xs)) ()
f = λy. n + y

in map f xs

5.1 Idempotency and Allocation Effects

In general, if we wish to lift a binding out of an enclosing lambda abstraction, that binding
must satisfy two constraints. The first is that it can be safely reordered with other expres-
sions in the abstraction, and the second is that it is idempotent. The first is needed because
moving the binding changes the order of evaluation relative to the original abstraction. The
second is needed because the lifted expression will tend to be evaluated less often, which is
the whole purpose of performing the transform. Note that a function that returns a freshly
allocated object is not idempotent. Now, although related work such as (Talpin & Jouvelot,
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1992) and (Benton et al., 2007) uses allocation effects to account for this, we do not. In our
system, an expression that produces a fresh object but has no other visible effects is still
considered pure. Consider then the following expression:

Λr1. Λ(w1 : Mutable r1).
let ( f : ()→ Int r1) = λ . 5 r1

(x : Int r1) = f ()
= updateInt r1 r1 w1 x (42 r1)

in f ()

This expression defines an inner function f that returns a freshly allocated ‘5’ object
each time it is applied. It then applies it, and destructively updates the result. As it stands,
the result of the entire expression is also 5. However, if we were to “optimise” it by lifting
the inner expression (5 r1) out of the abstraction for f then this would change its meaning:

Λr1. Λ(w1 : Mutable r1).
let (y : Int r1) = 5 r1

( f : ()→ Int r1) = λ . y
(x : Int r1) = f ()

= updateInt r1 r1 w1 x (42 r1)
in f ()

Although our typing rules assign the expression (5 r1) the pure effect ⊥, the meaning of
our program has changed, which makes our optimisation invalid. The trouble is that (5 r1)
is not idempotent, as it allocates a new object each time it is evaluated. However, the fact
that it is not idempotent only matters because we destructively update its result. Without
destructive update, there is no way to distinguish an expression that returns a fresh object,
from one that returns the same object every time.

This reveals that we do not actually need allocation effects to justify the full laziness
transform. To lift a given expression out of an abstraction it is sufficient to show that it
does not read or write mutable data, and that the resulting value cannot be updated. With
this in mind, a poignant question is whether there any useful transformations that can only
be justified using the information provided by allocation effects. The answer, of course, is
yes. Consider the following rewrite from (Benton et al., 2007).

let x = exp; y = exp in (x,y)
−→ let x = exp in (x,x)

This is valid provided exp does not read from any regions that it writes to, and performs
no visible allocation. If it were to allocate its return value then we could distinguish the two
elements of the pair by updating one and comparing both. However, note that the transform
is also valid if exp does not read from any regions that it writes to, and returns a value that
is constrained to be constant. This yields a weaker transform, though we are not aware
of any existing work that quantitatively compares the two. Note that this transform has a
similar structure to full-laziness: they both save repeated computation by increasing the
sharing of data. In summary, we choose to forgo allocation effects, simplify our analysis,
and reduce the volume of effect information. However, we are not aware of any technical
barrier to adding them as an extension to the existing system.
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6 Local Unboxing and Aliasing

It is well known that purely functional programs support more optimising rewrites than
their impure counterparts. The great enablers are the let-floating transforms (Peyton Jones
et al., 1996) that allow us to shift definitions into their use sites in order to expose oppor-
tunities for further transformation. In the absence of side effects we can arbitrarily change
the order of evaluation of a program without changing its meaning.

The fact that a program uses computational effects does not rule out performing similar
optimisations, provided we know which subexpressions have the potential to interfere with
others. An important part of this is to be able to reason about the aliasing properties of data.

For example, suppose we are compiling the following function:

Λr1 r2. Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let (z : Int r3) = add r1 r3 r3 x (1 r3)

= updateInt r2 r3 w2 y (0 r3)
in add r1 r3 r1 x z

Where add and updateInt have the following types:

add :: ∀r1 r2 r3. Int r1→ Int r2
Read r1∨Read r2−→ Int r3

updateInt :: ∀r1r2. Mutable r1⇒ Int r1→ Int r2
Read r2 ∨ Write r1−→ ()

The above function adds one to its first argument, updates its second, then adds its first
argument to the previous result. Now, suppose that we wish to optimise this function by
performing the local unboxing transform (Leroy, 1997). This should allow us to keep the
intermediate values in registers, reducing the number of objects we need to store in the
heap. We write the type of unboxed integers as Int#, unboxed integer literals like 23#, and
use the following primitives:

box :: ∀r1. Int#→ Int r1

unbox :: ∀r1. Int r1
Read r1−→ Int#

add# :: Int#→ Int#→ Int#

By design, these primitives do not support the destructive update of unboxed integers.
This effectively places the program in SSA form. It also means that Int# does not need
to be annotated with a region variable, as reading values of this type does not cause an
effect. Using these primitives we can rewrite our original function as follows — taking the
liberty of passing the unboxed constant 1# directly to add, converting to A-normal form,
and annotating each binding with the effect it causes.
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Λr1 r2. Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let (x1 : Int#) = unbox r1 x Read r1

(z1 : Int#) = add# x1 1# ⊥
(z : Int r3) = box r3 z1 ⊥

= updateInt r2 r3 w2 y (0 r3) Read r3∨Write r2

(x2 : Int#) = unbox r1 x Read r1

(z2 : Int#) = unbox r3 z Read r3

(res: Int#) = add# x2 z2 ⊥
in box r1 res ⊥

As the bindings for z1, z, and res are manifestly pure, we can float them directly into their
use sites. This is also possible for the z2 binding, as Read r3 is pure because r3 is constant.
Doing this exposes an opportunity to use the identity ∀x r. unbox r (box r x)≡ x

Λr1 r2. Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let (x1: Int#) = unbox r1 x Read r1

= updateInt r2 r3 w2 y (0 r3) Read r3∨Write r2

(x2: Int#) = unbox r1 x Read r1

in box r1 (add# x2 (unbox r3 (box r3 (add# x1 1#)))) ⊥

Now, although there is still an obvious optimisation opportunity left in this code, we
must be mindful of potentially interfering effects. The bindings for x1 and x2 appear to do
the same thing, but note the intermediate update of y. If x and y were bound to the same
heap object, meaning that they were aliases, then the second call to unbox would always
return zero. On the other hand, if we could guarantee that x and y were not aliases, then we
could simply set x2 = x1 and save the second unboxing.

We will consider two ways to achieve this: the first using the witnesses of constancy
we have already discussed, and the second using witnesses of distinctness which we will
cover in the next section. For the first way, we specialise the function for the case where r1

is constant, by requiring a witness of of constancy:

Λr1 r2. Λ(w1 : Const r1). Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let (x1: Int#) = unbox r1 x Read r1

= updateInt r2 r3 w2 y (0 r3) Read r3∨Write r2

in box r1 (add# x1 (unbox r3 (box r3 (add# x1 1#)))) ⊥

Note that by requiring r1 to be constant, we have also ensured that x and y cannot be
aliases. Or rather, we have ensured that the function cannot be called if x and y are aliases.
As discussed in §3.2 our type system ensures that witness of constancy and mutability for
the same region cannot be created. If the caller provides a witness of constancy for r1,
then if x and y are the same object then there is no way it can also provide a witness of
mutability for r2.
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One potential disadvantage of this approach is that the witness variable w1 does not
occur in the body of the abstraction that binds it. Here, we are using the witness to create a
context where a particular transformation is valid, instead of simply passing it to a primitive
function like update or suspend. During further optimisation we must be mindful not to
erase the binders for such witnesses, else the function may be called with arguments that
do not meet the properties we assumed when specialising it.

6.1 Witnesses of Distinctness

In the example in the previous section we eliminated the second call to unbox by special-
ising for the case where the first argument was constant. This got the job done, but was a
bigger hammer than necessary. The only property that we really needed was that the two
arguments did not alias, that is, they were distinct. With this in mind, we define a new
witness kind and its associated constructor that expresses this directly.

Distinct :: %→%→ ♦ (witness kind constructor)
MkDistinct :: Π(r1 : %).Π(r2 : %). Distinct r1 r2 (witness type constructor)

A witness of kind Distinct r1 r2 guarantees that regions r1 and r2 are not aliases, meaning
that objects in region r1 do not alias objects in region r2. We write the type level witness
as distinct ϕ1 ϕ2, for some region types ϕ1 and ϕ2. Before discussing how these witnesses
are introduced into the program, we will revisit the example from the previous section.
This time, we specialise it for the case where the two arguments are distinct, without also
requiring that the first is constant:

Λr1 r2. Λ(w1 : Distinct r1 r2). Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let (x1: Int#) = unbox r1 x Read r1

= updateInt r2 r3 w2 y (0 r3) Read r3∨Write r2

in box r1 (add# x1 (unbox r3 (box r3 (add# x1 1#)))) ⊥

As we have this new witness, the effects Read r1 and Write r2 are guaranteed not to
interfere. Due to this, it is also safe to move the x1 binding across the call to updateInt so
that is closer to its use site. This will help to reduce the number of registers required when
compiling to native machine code. We can also apply the unbox/box identity to yield our
final version:

Λr1 r2. Λ(w1 : Distinct r1 r2). Λ(w2 : Mutable r2). λ (x : Int r1). λ (y : Int r2).
letregion r3 with w3 = MkConst r3 in
let = updateInt r2 r3 w2 y (0 r3) Read r3∨Write r2

(x1: Int#) = unbox r1 x Read r1

in box r1 (add# x1 (add# x1 1#)) ⊥

With this code, although there is nothing preventing a caller from instantiating both
r1 and r2 with the same type (say, ρ5) our system ensures that the resulting function
cannot be called. We do this by ensuring that there is no way to produce a witness of
kind Distinct ρ5 ρ5. In fact, this part turns out to be surprisingly easy.
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As with witnesses of constancy and mutability, we tie the creation of witnesses of
distinctness to letregion. Recall from EvLetRegion in Fig. 7 that the reduction of an
expression such as letregion r with {wi = δi} in t first allocates a fresh region label ρ ,
then substitutes the handle ρ for all occurrences of r in both the witness set δi and the body
t. The fact that ρ is fresh means that it cannot alias with any existing handles. Also, as
region handles do not appear in binding positions, they behave like type constructors and
are not substituted for one another. Clearly, we must prevent terms such as MkDistinct r1 r1

from appearing in the initial program, but as with MkConst and MkMutable, requiring all
occurrences of MkDistinct to appear in the witness set associated with a letregion reduces
this to a simple syntactic check. For example, consider the following function:

Λ(r1 : %). ...

letregion r2 in ...

letregion r3with {w3 = MkDistinct r1 r3; w4 = MkDistinct r2 r3}
in ... w3 ... w4 ...

Now, suppose we apply this function to the region handle ρ1, and then reduce the outer
letregion. Doing this leaves us with the following state:

H,ρ1,ρ2 ; letregion r3 with {w3 = MkDistinct ρ1 r3; w4 = MkDistinct ρ2 r3}
in ... w3 ... w4 ...

By EvLetRegion, the next step is to allocate a fresh region handle (say ρ3), substitute it
into the witness set, reduce the witness expressions to normal form, and then substitute
these for w3 and w4 in the body. The corresponding evaluation and kinding rules are as
follows:

H, ρ1, ρ2 ; MkDistinct ρ1 ρ2  distinct ρ1 ρ2 ρ1 6= ρ2 (EwDistinct)

Γ | Σ, ρ1, ρ2 `K distinct ρ1 ρ2 :: Distinct ρ1 ρ2 ρ1 6= ρ2 (KiDistinct)

Completing the reduction leaves us with:

H,ρ1,ρ2,ρ3 ; ... distinct ρ1 ρ3 ... distinct ρ2 ρ3 ...

Once these witnesses have been created, the fact that we cannot substitute for their
embedded region handles means that they cannot be changed. This aspect of our system
arises naturally from the phase distinction between region variables and region handles, as
first discussed in §4.7. As the properties encoded by each witness are true at the time of
creation, and as neither witnesses or the underlying properties of the store can be changed
during evaluation, they must also be true at the time of use.

Also, by inspection of our kinding rules, the only closed (with no free variables), normal
form type that can have a kind like Distinct ρ1 ρ3 is distinct ρ1 ρ3. From this it follows that
when we apply a function to type of kind Distinct ρ1 ρ3 that type must be distinct ρ1 ρ3.
Our Progress theorem shows that such a reduction is always possible. It then follows that
when we pass such a witness, the corresponding property of the store is always true.

Note that our use of witnesses to guarantee non-aliasing is weaker than that provided by
a “real” aliasing analysis such as (Guo et al., 2005) or (Smith et al., 1999). These systems
can recover (an approximation to) aliasing relationships between objects at every point in
the program, from an arbitrary sequence of update statements. In contrast, in our system
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the occurrence of a witness of kind Distinct r1 r2 ensures that objects in regions r1 and r2

never alias, ever. The advantage of our approach is that it’s practically free. With respect to
the concrete implementation all we had to add was the kind and superkind of MkDistinct
and Distinct, and a trivial syntactic check on the form of letregion. Now we can implement
aliasing aware optimisations without also writing a heavy-duty analysis or adding further
type machinery.

7 Related Work

The inspiration for our work has been to build on the monadic intermediate languages
of (Tolmach, 1998), (Benton & Kennedy, 1999) and (Peyton Jones et al., 1998). Note
that for our purposes, the difference between using effect and monadic typing is largely
syntactic. We prefer effect typing because it mirrors our operational intuition more closely,
but (Wadler & Thiemann, 2003) gives a translation between the two. Our system extends
the previous with region, effect and mutability polymorphism, which improves the scope
of the optimisations that can be performed. The work of (Benton et al., 2007) and (Benton
& Buchlovsky, 2007), presents monadic languages that include region and effect polymor-
phism, but does not consider mutability polymorphism or lazy evaluation. The roots of
effect polymorphism lie in (Lucassen & Gifford, 1988) which also uses a System-F based
language.

Our notion of a “witness” is derived from from a long line of work on typed interme-
diate languages (Tarditi et al., 1996), typed assembly languages (Morrisett et al., 1999)
and proof carrying code (Necula, 1997). However, in the last two of these systems the
focus is guaranteeing the safety of programs that use low level operations such as strong
update, that is, destructive update that changes the type of a heap location as well as its
value. In contrast, we do not support such an operation, and our focus is on justifying the
transformation of specialised versions of a function.

The Capability Calculus (Crary et al., 1999) provides region based memory manage-
ment, whereby a capability is associated with each region, and an expression can only
access a region when it holds its capability. When the region is deallocated, its associated
capability is revoked, ensuring soundness. The Vault language of (DeLine & Fähndrich,
2001) is related. Although the capabilities of (Crary et al., 1999) have similarities to the
witnesses of our system, theirs are not reified in the term being evaluated, and we do not
allow ours to be revoked.

An important consideration of our work is to keep the programs digestible by humans.
As our system is used as the core language of a larger compiler we spend a substantial
amount of time staring at programs written in it. The fact that information about muta-
bility, purity and aliasing is reified and explicit in the core program helps us, as compiler
developers, to reason about the compilation process. In this respect our approach is closer
to (Terauchi & Aiken, 2005). This system also uses type level witnesses that are explicitly
threaded through the program. They then provide a mechanism to check for witness race
freedom, meaning that a program using side effects has enough data dependencies to ensure
that a parallel reduction of it has a deterministic result.

FABLE (Swamy et al., 2008) is a dependently typed extension of System-F that asso-
ciates type level security labels with the data or actions they protect. These labels can be
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used to statically enforce security policies such as: search queries read from a network
socket must be checked for malicious instructions before being passed onto a backend
database. Although these labels could express the Mutable and Const constraints of our
own system, they are treated more like data constructors than type class constraints. FABLE

contains a syntactically separated policy language that is used to explicitly add, remove and
test for the labels attached to some object. However, their use of dependent types means that
type checking is undecidable without the use of an auxiliary termination checker, whereas
our language is less general but straightforward to check.

With respect to mutability polymorphism the stated goal of the BitC (Shapiro et al.,
2008) language is to permit any location, whether on the stack, heap or within data struc-
tures to be mutated. Its operational semantics includes an explicit stack as well as a heap,
and function arguments are implicitly copied onto the stack during application. BitC in-
cludes mutability annotations, but does not use region or effect typing. Finally, (Gupta,
1995) presents an extension to the parallel language Id, which allows objects to be destruc-
tively initialised and then treated as constant from then on. As in our own system, Gupta
uses region variables to track the mutability of objects. Instead of using region constraints,
region variables are only attached to the types of mutable objects, leaving the types of
constant objects annotated with the null region ε .

8 Conclusions and Future Work

We have presented a System-F style intermediate language that supports mutability poly-
morphism as well as lazy evaluation. We have used dependently kinded witnesses to track
the mutability, constancy and aliasing of regions, and the purity of effects. One of the
current limitations of our system is that the results of all case alternatives must have the
same type. This prevents us from choosing between, say, a mutable and a constant integer.
In future work we plan to provide a new region constraint that represents the fact that an
object could be in either a mutable or constant region. We would permit such objects to be
read, but not updated, and computations that read them could not be suspended. Doing so
would likely require introducing a notion of subtyping into the system, so the types of all
alternatives could be coerced to a single upper bound.

Another current limitation is that we have no way to destructively initialise an object,
and then treat it as constant from that point onward. For example, in the length function
from §3.2 we copied the final counter value before returning it because we did not want
a Mutable constraint in the overall type of length. We are currently working on a system
to provide a local witness of mutability to an expression that performs such initialisation.
We must then ensure that this witness, and hence the capability to perform further updates,
cannot be exported out of the context that performs the initialisation.
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