
Work Efficient Higher-Order Vectorisation
(Appendix)

Ben Lippmeier† Manuel M. T. Chakravarty† Gabriele Keller† Roman Leshchinskiy†

Simon Peyton Jones‡

†Computer Science and Engineering
University of New South Wales, Australia

{benl,chak,keller,rl}@cse.unsw.edu.au

‡Microsoft Research Ltd
Cambridge, England

{simonpj}@microsoft.com

1. Technical Report
This appendix will be appended to the main paper to become the
technical report cited in the paper.

2. Example Code
A sequential reference implementation of our new array represen-
tation is available from:

http://www.cse.unsw.edu.au
/~benl/papers/replicate/dph-reference-array.tgz

This package also contains the example derivations as Haskell
modules and works with at least GHC 7.0.4 and GHC 7.4.1.

The production implementation is part of DPH 0.6.1.2 which is
available on Hackage. This library needs GHC 7.4.1 to run. The
dph-lifted-vseg package implements the lifted combinators,
while the dph-prim-seq and dph-prim-par packages implement
the flat array operators.

The benchmark programs presented in the paper are part of the
dph-examples package, also on Hackage.

[Copyright notice will appear here once ’preprint’ option is removed.]

1 2012/3/12

-- Closures and closure arrays ------------------------
data (a :-> b)
= forall env. PA env
=> Clo (env -> a -> b)

(Int -> PData env -> PData a -> PData b)
env

data instance PData{s} (a :-> b)
= forall env. PA env
=> AClo (env -> a -> b)

(Int -> PData env -> PData a -> PData b)
(PData{s} env)

-- Closure constructors -------------------------------
closure1 :: (a -> b)

-> (Int -> PA a -> PA b)
-> (a :-> b)

closure1 fv fl
= let fl’ n pdata

= case fl n (PArray n pdata) of
PA _ pdata’ -> pdata’

in Clo (_env -> fv)
(\n _env -> fl’ n) ()

closure2 -> (a -> b -> c)
-> (Int -> PA a -> PA b -> PA c)
-> (a :-> b :-> c)

closure2 fv fl
= let fl’ n pdata1 pdata2

= case fl n (PA n pdata1) (PA n pdata2) of
PA _ pdata’ -> pdata’

fv_1 _ xa = Clo fv fl’ xa
fl_1 _ _ xs = AClo fv fl’ xs

in Clo fv_1 fl_1 ()

-- Closure and lifted closure application -------------
($:) :: (a :-> b) -> a -> b
($:) (Clo fv _fl env) x = fv env x

($:^) :: PA (a :-> b) -> PA a -> PA b
PA n (AClo _fv fl envs) $:^ PA _ as

= PA n (fl n envs as)

-- Closure converted combinators ----------------------
indexPP :: PA a => PA a :-> Int :-> a
indexPP = closure2 PA.index PA.index_l

mapPP :: (a :-> b) :-> PA a :-> PA b
mapPP = closure2 mapPP_v mapPP_l
where mapPP_v :: (a :-> b) -> PA a -> PA b

mapPP_v f as
= replicatePA (lengthPA as) f $:^ as

mapPP_l :: PA (a :-> b) -> PA (PA a) -> PA (PA b)
mapPP_l fs ass
= unconcatPA ass
$ replicatesPA (takeLengths ass) fs
$:^ concatPA ass

zipWithPP :: (a :-> b :-> c)
:-> PArray a :-> PArray b :-> PArray c

zipWithPP = closure3 zipWithPP_v zipWithPP_l
where zipWithPP_v f xs ys

= replicatePA (lengthPA xs) f $:^ xs $:^ ys
zipWithPP_l _ fs ass bss
= unconcatPA ass
$ replicatesPA (takeLengths ass) fs
$:^ concatPA ass
$:^ concatPA bss

Figure 1. Closure Converted Lifted Combinators.

-- Vectorising Types -------------------------------------
Vt[T] :: Type -> Type
Vt[T1 -> T2] = Vt[T1] :-> Vt[T2] (functions)
Vt[[:T:]] = Lt[T] (parallel arrays)
Vt[Int] = Int (primitive scalar types)
Lt[T] = PA Vt[T]

-- Vectorising Terms -------------------------------------
V[E] :: Term -> Term
V[k] = k (literals)
V[f] = f_PP (f is bound at top level)
V[x] = x (x is locally bound)
V[E1 E2] = V[E1] $: V[E2] (application)

V[let f x1 x2 .. = E1 in E2]
= let fv x1 x2 .. = V[E1]

fl n x1 x2 .. = L[E1]n
f_PP = closure_N fv fl

in V[E2]

V[if E1 then E2 else E3]
= if V[E1] then V[E2] else V[E3]

-- Lifting Terms --
L[E]n :: Term -> Term -> Term
L[k]n = replicatePA n k (literals)
L[f]n = replicatePA n f_PP (f is bound at top level)
L[x]n = x (x is locally bound)
L[E1 E2] = L[E1]n $:^ L[E2]n (application)

L[let f x1 x2 .. = E1 in E2]n
= let fv x1 x2 .. = V[E1]

fl m x1 x2 .. = L[E1]m
f_PP = closure_N fv fl

in L[E2]n

L[if E1 then E2 else E3]n
= let flags = L[E1]n

in combine flags (L[E2’] (countTrue flags))
(L[E3’] (countFalse flags))

with E2’ = [{packPA fvs_i flags True / fvs_i}]E2
E3’ = [{packPA fvs_i flags False / fvs_i}]E3

Figure 2. The Vectorisation Transform

2 2012/3/12

3. Vectorisation of the retrieve function
The following is a derivation of the vectorised version of the
retrieve function discussed in §2.

retrieve :: [:[:Char:]:] -> [:[:Int:]:] -> [:[:Char:]:]
retrieve xss iss

= zipWithP mapP (mapP indexP xss) iss

We first apply the vectorisation transform from Figure 2. This
replaces application of library functions to their closure converted
(*PP) versions. The definitions of these functions are in Figure 1.

retrieve_v :: PA (PA a) -> PA (PA Int) -> PA (PA a))
retrieve_v xss iss
= zipWithPP $: mapPP $: (mapPP $: indexPP $: xss) $: iss

We proceed by inlining the definitions of the library functions
and simplify where appropriate. By doing this we will see how
replicates and concat are introduced into the program. We start
by splitting out the partial application into its own binding to help
the presentation.

retrieve_v xss iss
= let fs = mapPP $: indexPP $: xss

in zipWithPP $: mapPP $: fs $: iss

Inlining zipWithPP and the first instance of mapPP reveals that
the closures for the worker functions are replicated. Inlining also
introduces the lifted application operator ($:^). The definition of
mapPP is given in Figure 1, and zipWithPP is a simple extension.

retrieve_v xss iss
= let fs = (replicate (length xss) indexPP) $:^ xss

in (replicate (length iss) mapPP) $:^ fs $:^ iss

We now inline the lifted application operator ($:^). As indexPP is
partially applied, we end up with an explicit closure which captures
the xss array in its environment. In contrast, mapPP has been fully
applied, so the lifted application reduces to a direct application of
the lifted map function mapPP_l.

retrieve_v xss iss
= let fs = Clo index index_l xss

in mapPP_l fs iss

Inlining mapPP_l reveals that segmented replicate is being applied
to the closure representing the partial application of indexP in the
original program. Note that we are now using replicatesPR. The
*PR suffix indicates that the function works on the internal PData
type rather than the PA wrapper.

retrieve_v xss iss
= unconcat iss
$ (let ns = lengths $ takeSegd iss

n = sum ns
in PA n (replicatesPR ns

(Clo index index_l xss)))
$:^ concat iss

We now inline the replicatesPR instance for closures. Perform-
ing segmented replicate on a closure produces an array closure
where the environment has been replicated.

retrieve_v xss@(PA _ xss’) iss
= unconcat iss
$ (let ns = lengths $ takeSegd iss

n = sum ns
in PArray n (AClo index index_l

(replicatesPR ns xss’)))
$:^ concat iss

Finally, we inline the remaining lifted application operator. This
reveals that lifted indexing is being applied to our replicated tables
array (xss). The vectorised function retrieves one element from
each of the copies, then unconcatenates the result to produce the
nesting structure of the original indices array (iss).

retrieve_v xss@(PArray _ xss’) iss@(PArray _ iss’)
= unconcat iss
$ let ns = lengths $ takeSegd iss

n = sum ns
in PArray n (indexlPR n (replicatesPR ns xss’)

(concatPR iss’))

We now consider what complexity bounds must be placed on the
array operators so that the vectorised version of retrieve has
the same complexity as the original. The work complexity of the
original is O(length (concat iss)). For the vectorised version to
retain this complexity the operators indexlPR, replicatesPR
and concatPR must all be linear in the length of their results. Since
retrieve is polymorphic in the element type a, the array operators
must have this complexity for possible element types. This includes
arrays of arbitrary nesting depth.

3 2012/3/12

4. Vectorisation of the retsum function
The retsum function indexes several shared arrays, and adds the
retrieved value to the sum of the array it came from. This has a
similar structure to retrieve from the previous section.

retsum :: [:[:Int:]:] -> [:[:Int:]:] -> [:[:Int:]:]
retsum xss iss
= zipWithP mapP

(mapP (\xs i. indexP xs i + sumP xs) xss) iss

Applying the vectorisation transform yields:

retsum_v xss iss
= let fv ys j = index ys j + sum ys

fl c yss js = add_l c (index_l c yss js)
(sum_l c yss)

fPP = closure2 fv fl
in zipWithPP $: mapPP $: (mapPP $: fPP $: xss) $: iss

Shift partial application into own binding and inline zipWithPP

retsum_v xss iss
= let c = length iss

fv ys j = index ys j P.+ sum ys
fl c’ yss js = add_l c’ (index_l c’ yss js)

(sum_l c’ yss)
fPP = closure2 fv fl
gs = mapPP $: fPP $: xss

in replicate c mapPP $:^ gs $:^ iss

Inline closure2 and replicates instances.

retsum_v _xss@(PA _ xss’) iss
= let c = length iss

fv ys j = index ys j P.+ sum ys
fl c’ yss js = add_l c’ (index_l c’ yss js)

(sum_l c’ yss)

fl’ n pdata1 pdata2
= case fl n (PA n pdata1) (PA n pdata2) of

PA _ pdata’ -> pdata’

fl_1 _ _ xs = AClo fv fl’ xs
gs = PA c (fl_1 c (replicatePR c ()) xss’)

in replicate c mapPP $:^ gs $:^ iss

Inline fl_1, mapPP, and replicate on closures.

retsum_v _xss@(PA _ xss’) iss
= let fv ys j = index ys j P.+ sum ys

fl c’ yss js = add_l c’ (index_l c’ yss js)
(sum_l c’ yss)

fl’ n pdata1 pdata2
= case fl n (PA n pdata1) (PA n pdata2) of

PA _ pdata’ -> pdata’

in unconcat iss
$ (let ns = lengths iss

n = sum ns
in PA n (AClo fv fl’ (replicatesPR ns xss’)))

$:^ concat iss

Inline lifted applications.

retsum_v xss iss
= let fl c’ yss js = add_l c’ (index_l c’ yss js)

(sum_l c’ yss)
in unconcat iss

$ (let ns = lengths iss
n = sum ns

in fl n (replicates ns xss) (concat iss))

Inline fl and float bindings.

retsum_v xss iss
= let ns = lengths iss

n = sum ns
yss’ = replicates ns xss

in unconcat iss
$ add_l n (index_l n yss’ (concat iss))

(sum_l n yss’)

5. Vectorisation of the furthest function
The furthest function takes an array of points and computes the
maximum distance between any pair.

furthest :: [:(Float, Float):] -> Float
furthest ps = maxP (mapP (\p. maxP (mapP (dist p) ps)) ps)

dist :: (Float, Float) -> (Float, Float) -> Float

Applying the vectorisation transform yields:

furthest_v :: PA Int -> Int
furthest_v xs
= let fv :: Int -> Int

fv = unused

fl :: Int -> PA Int -> PA Int
fl c ys = replicate c maxPP

$:^ (replicate c mapPP
$:^ (replicate c distPP $:^ ys)
$:^ replicate c xs)

fPP :: Int :-> Int
fPP = closure1 fv fl

in maxPP $: (mapPP $: fPP $: xs)

Inline maxPP, fPP and last occurrence of mapPP.

furthest_v xs
= let fl c ys = max_l c

$ replicate c mapPP
$:^ (replicate c distPP $:^ ys)
$:^ replicate c xs

in max (fl (length xs) xs)

Inline inner mapPP.

furthest_v xs
= let fl c ys

= let xss’ = replicate c xs
in max_l c

$ unconcat xss’
$ replicates (lengths xss’)

((replicate c distPP) $:^ ys)
$:^ concat xss’

in max (fl (length xs) xs)

Float bindings.

furthest_v xs
= max (let c = length xs

xss’ = replicate c xs
in max_l c

$ unconcat xss’
$ replicates (lengths xss’)

((replicate c distPP) $:^ xs)
$:^ concat xss’)

4 2012/3/12

Inline distPP closure.

furthest_v xs
= let c = length xs

xss’ = replicate c xs
ns = lengths xss’

fl’ n pdata1 pdata2
= case dist_l n (PA n pdata1) (PA n pdata2) of

PA _ pdata’ -> pdata’

fv_1 _ xa = Clo dist fl’ xa
fl_1 _ _ xs’ = AClo dist fl’ xs’
clo = Clo fv_1 fl_1 ()

in max $ max_l c
$ unconcat xss’
$ replicates ns ((replicate c clo) $:^ xs)
$:^ concat xss’

Inline clo

furthest_v xs@(PA _ xs’)
= let c = length xs

xss’ = replicate c xs
ns = lengths xss’

fl’ n pdata1 pdata2
= case dist_l n (PA n pdata1) (PA n pdata2) of

PA _ pdata’ -> pdata’

in max $ max_l c
$ unconcat xss’
$ replicates ns (PA c (AClo dist fl’ xs’))
$:^ concat xss’

Inline replicates and final lifted application.

furthest_v xs@(PAy _ xs’)
= let c = length xs

xss’ = replicate c xs
ns = lengths xss’

fl’ n pdata1 pdata2
= case dist_l n (PA n pdata1) (PA n pdata2) of

PA _ pdata’ -> pdata’

in max $ max_l c
$ unconcat xss’
$ (case concat xss’ of

PA _ xssd
-> PA (sum ns)
$ fl’ (sum ns) (replicatesPR ns xs’) xssd)

Inline fl’ and simplify.

furthest_v xs
= let c = length xs

xss’ = replicate c xs
ns = lengths xss’

in max $ max_l c
$ unconcat xss’
$ dist_l (U.sum ns)

(replicates ns xs) (concat xss’)

Note that if c is the length of xs all O(c2) distances will be
computed by dist_l before max and max_l determine the greatest
one. When run sequentially, the source function would use space
linear in the length of xs, but the vectorised version uses space
quadratic in the length of xs. This exposes the maximal amount of
parallelism, at the cost of increased space complexity to hold the
intermediate values.

6. Segment Descriptor Culling Functions
-- | Drop physical segments in a SSegd that are unrechable
-- from the segmap, and rewrite the segmap to match.
cullOnSegmap :: Vector Int -> SSegd -> (Vector Int, SSegd)
cullOnSegmap segmap (SSegd sources starts (Segd lengths _))
= (segmap’, ssegd’)
where

(used_flags, used_map)
= makeCullMap (length sources) segmap

-- Use the used_map to rewrite the segmap to point to
-- the corresponding psegs in the result.
-- Example: segmap: [0 1 1 3 5 5 6 6]
-- used_map: [0 1 -1 2 -1 3 4]
-- segmap’: [0 1 1 2 3 3 4 4]
segmap’ = map (used_map !) segmap

-- Drop unreachable psegs entries from the SSegd.
starts’ = pack starts used_flags
sources’ = pack sources used_flags
lengths’ = pack lengths used_flags

ssegd’ = SSegd sources’ starts’
$ segdOfLengths lengths’

-- | Drop data chunks in a PDatas that are unreachable
-- from the SSegd, and rewrite the SSegd to match.
cullOnSSegd :: PR a => SSegd -> PDatas a -> (SSegd, PDatas a)
cullOnSSegd (SSegd sources starts segd) pdatas
= (ssegd’, pdatas’)
where

(used_flags, used_map)
= makeCullMap (lengthdPR pdatas) sources

-- Rebuild the SSegd.
sources’ = map (used_map !) sources
ssegd’ = SSegd sources’ starts segd

-- Drop unreachable chunks from the PDatas.
pdatas’ = packdPR pdatas used_flags

makeCullMap:: Int -> Vector Int ->(Vector Bool, Vector Int)
makeCullMap total used
= (flags, used_map)
where

-- Make an array of flags signalling whether each
-- element is used or not.
-- Example: used: [0 1 1 3 5 5 6 6]
-- => flags: [T T F T F T T]
flags
= backpermuteDft total (const False)
$ zip used

(replicate (length used) True)

-- Make a set of used indices.
-- Example: flags: [T T F T F T T]
-- => uset_set: [0 1 3 5 6]
used_set
= pack (enumFromN 0 (length flags)) flags

-- Make am array that maps used elements in the source
-- array onto elements in the result array.
-- If a particular element isn’t used this maps to -1.
-- Example: used_set: [0 1 3 5 6]
-- used_map: [0 1 -1 2 -1 3 4]
used_map
= backpermuteDft total (const (-1 :: Int))
$ zip used_set

(enumFromN 0 (length used_set))

5 2012/3/12

7. Virtual Shared Indexing
The following indexvsPR function implements virtual shared in-
dexing for nested arrays and is described in §5.1 of the main paper.

instance PR a => PR (PA a) where
indexvsPR (PNesteds pdatas) vsegd1 srcixs
= PNested vsegd’ pdatas’
where

-- O(length segixs)
(segLengths, segStarts, segBlocks)
= unzip3
$ map (\(ix1, ix2) ->

let -- Index into the outer array.
ssegd1 = ssegd vsegd1
psegid1 = segmap vsegd1 ! ix1
source1 = sources ssegd1 ! psegid1
start1 = starts ssegd1 ! psegid1

-- Index into the inner arrays.
arr2 = pdatas ! source1
vsegd2 = vsegd arr2
ssegd2 = ssegd vsegd2
segd2 = segd ssegd2
psegid2 = segmap vsegd2 ! (start1 + ix2)
source2 = sources ssegd2 ! psegid2
start2 = starts ssegd2 ! psegid2
length2 = lengths segd2 ! psegid2
block2 = pdata arr2 ‘indexdPR‘ source2

in (length2, start2, block2))
$ srcixs

-- O(length segixs)
vsegd’ = promoteSSegd

$ SSegd (enumFromN 0 (length srcixs))
segStarts

$ segdOfLengths segLengths

-- O(length flats) = O(length segixs)
pdatas’ = concatdPR

$ map singletondPR segBlocks

8. Virtual Shared Extraction
The following extractvsPR function implements virtual shared
extraction for nested arrays and is described in §5.1 of the main
paper.

instance PR a => PR (PA a) where
extractvsPR (PNesteds pdatas) vsegd1
= PNested vsegd’ pdatas_culled
where

ssegd1 = demoteVSegd vsegd1
segLengths = lengths $ segd ssegd1
segSources = sources ssegd1

-- Get the array id for each segment in the result.
src_sources = replicates segLengths segSources

-- Gather up the segmaps from each source array.
segmaps = PInts $ map (segmap . vsegd) pdatas
sourcess_v = map (sources . ssegd . vsegd) pdatas
startss_v = map (starts . ssegd . vsegd) pdatas
lengthss_v = map (lengths.segd.ssegd.vsegd) pdatas

-- Get the psegid to use for each segment in the
-- result, relative to the source arrays.
PInt src_psegids = extractvsPR segmaps vsegd1

-- Because all the flat arrays go into the result,
-- we need to adjust the source ids from the
-- original arrays.
psrcoffset = prescanl (+) 0

$ map (lengthdPR . pnestedPData) pdatas

-- Get the block id for each segment in the result.
dst_sources
= zipWith (\src pseg -> (sourcess_v ! src) ! pseg

+ psrcoffset ! src)
src_sources src_psegids

-- Get the start index for each segment in its block.
dst_starts
= zipWith (\src pseg -> (startss_v ! src) ! pseg)

src_sources src_psegids

-- Get the length of each segment in the result.
dst_lengths
= zipWith (\src pseg -> (lengthss_v ! src) ! pseg)

src_sources src_psegids

-- Build the SSegd for the result.
-- This references all data blocks in the source.
ssegd_all = SSegd dst_sources dst_starts

$ segdOfLengths dst_lengths

-- Collect up all blocks from the source.
pdatas_all = concatdPR $ map pnestedPData pdatas

-- Cull the blocks from the source array so the
-- SSegd only references the ones needed in the
-- result.
(ssegd_culled, pdatas_culled)

= cullOnSSegd ssegd_all pdatas_all

-- Build the final VSegd
vsegd’ = promoteSSegd ssegd_culled

6 2012/3/12

9. Barnes-Hut Kernel
This is the kernel of the Barnes-Hut benchmark described in §7 of
the main paper.

-- A point with some mass.
data MassPoint = MP Double Double Double
-- X Y mass

-- Acceleration vector.
type Accel = (Double, Double)

-- Bounding box for points.
data BoundingBox = Box Double Double Double Double

-- The Barnes-Hut Quad-Tree
data BHTree

= BHT Double -- Size of box.
Double -- Centroid X.
Double -- Centroid Y.
Double -- Centroid mass.
[:BHTree:] -- Children.

-- | Given a bounding box containing all the points,
-- calculate their accelerations.
calcAccelsWithBox

:: Double -- Simulation smoothing param.
-> BoundingBox -> [:MassPoint:] -> [:Accel:]

calcAccelsWithBox epsilon box points
= [: calcAccel epsilon m tree | m <- points :]
where tree = buildTree box points

-- | Build the Barnes-Hut quadtree tree.
buildTree :: BoundingBox -> [:MassPoint:] -> BHTree
buildTree bb points
| lengthP points <= 1 = BHT s x y m emptyP
| otherwise = BHT s x y m subTrees
where MP x y m = calcCentroid points

(boxes, splitPnts) = splitPoints bb points
subTrees

= [: buildTree bb’ ps
| (bb’, ps) <- zipP boxes splitPnts:]

Box llx lly rux ruy = bb
sx = rux - llx
sy = ruy - lly
s = if sx < sy then sx else sy

-- | Split points according to their locations in
-- the quadrants.
splitPoints

:: BoundingBox
-> [: MassPoint :]
-> ([:BoundingBox:], [:[: MassPoint :]:])

splitPoints b@(Box llx lly rux ruy) points
| noOfPoints <= 1 = (singletonP b, singletonP points)
| otherwise
= unzipP [: (b,p) | (b,p) <- zipP boxes splitPars

, lengthP p > 0:]
where noOfPoints = lengthP points

lls = [: p | p <- points, inBox b1 p :]
lus = [: p | p <- points, inBox b2 p :]
rus = [: p | p <- points, inBox b3 p :]
rls = [: p | p <- points, inBox b4 p :]
b1 = Box llx lly midx midy
b2 = Box llx midy midx ruy
b3 = Box midx midy rux ruy
b4 = Box midx lly rux midy
boxes = [:b1, b2, b3, b4:]
splitPars = [:lls, lus, rus, rls:]
(midx, midy) = ((llx + rux) / 2.0, (lly + ruy) / 2.0)

-- | Check if point is in box.
-- (excluding left and lower border)
inBox :: BoundingBox -> MassPoint -> Bool
inBox (Box llx lly rux ruy) (MP px py _)
= (px > llx) && (px <= rux) && (py > lly) && (py <= ruy)

-- | Calculate the centroid of some points.
calcCentroid:: [:MassPoint:] -> MassPoint
calcCentroid mpts
= MP (sumP xs / mass) (sumP ys / mass) mass
where

mass = sumP [:m | MP _ _ m <- mpts:]
(xs, ys) = unzipP [:(m * x, m * y) | MP x y m <- mpts:]

-- | Calculate the acceleration of a point due to the
-- points in the given tree.
calcAccel :: Double

-> MassPoint -> BHTree -> (Double, Double)

calcAccel epsilon point (BHT s x y m subtrees)
| lengthP subtrees == 0
= accel epsilon point (MP x y m)

| isFar mpt s x y
= accel epsilon point (MP x y m)

| otherwise
= let (xs, ys)

= unzipP [: calcAccel epsilon point st
| st <- subtrees :]

in (sumP xs, sumP ys)

-- | Calculate the acceleration between points.
accel :: Double -- Smoothing parameter.

-> MassPoint -- The point being accelerated.
-> MassPoint -- Neighbouring point.
-> Accel

accel epsilon (MP x1 y1 _) (MP x2 y2 m)
= (aabs * dx / r , aabs * dy / r)
where rsqr = (dx * dx) + (dy * dy) + epsilon * epsilon

r = sqrt rsqr
dx = x1 - x2
dy = y1 - y2
aabs = m / rsqr

-- | If the point is far from a box in the tree then we
-- can use its centroid as an approximation of all the
-- points in the corresponding branch.
isFar :: MassPoint -- Point being accelerated.

-> Double -- Size of box.
-> Double -- X pos of centroid.
-> Double -- Y pos of centroid.
-> Bool

isFar (MP x1 y1 m) s x2 y2
= let dx = x2 - x1

dy = y2 - y1
dist = sqrt (dx * dx + dy * dy)

in (s / dist) < 1

7 2012/3/12

