vpes (are/want to be) Calling Conventions

Ben Lippmeier
Digital Asset
FP-Syd 2019/1/23

Sinding Arity

fO0 : Nat -> Nat -> Nat
f0 = Ax. Ay. X + vy (arity 0)

fl : Nat -> Nat -> Nat
fl x = A\y. X + vy (arity 1)

f2 : Nat -> Nat -> Nat
f2 x vy =x +vy (arity 2)

These bindings all have the same type,
but different binding arity.

Types want to be Calling Conventions

fl1 : Nat -> Nat -> Nat
fl x = A\y. X + vy (arity 1)

f2 : Nat -> Nat -> Nat
f2 xyv=x +vy (arity 2)

To a compiler backend these are different functions,
need different code to be generated,
and should rightly have different types.

Now with Type Parameters

g0 : va. Bool -> a -> a -> a
g0 = Aa. Ab:Bool. Ax:a. Ay:a (arity 0,0)
if b then x else y

gl 2 : va. Bool -> a -> a -> a
gl 2 @a (b:Bool) (x:a) (arity 1,2)
= Ay:a. if b then x else y

Trouble...

g0 : Bool -> Vva. a -> a -> a
g0 = Ax:Bool. Na. Ax:a. Ay:a (arity 0,0)
if b then x else y

g0 has a rank-1 type but it is not in “prenex form”

gXX : Bool -> Va. a -> a -> a
gXX (b:Bool) @a (x:a) (arity ?27?)
= Ay:a. if b then x else y

Parameter and Return Vectors

f2 : [Nat, Nat] :-> [Nat]
£f2 [x, y] = [x + Y]

g2 : [Nat] :-> [Nat, Nat]
g2 [x] = [%, X]

fl : [Nat] :-=> [[Nat] :-> [Nat]]
f1 [x] = [A[y]. [x + y]]

fO ¢+ [] :=> [[Nat] :-> [[Nat] :=> [Nat]]]
fO []1 = [A[x].[A[Y]. [x + y]]]

Multiple Return Values vs Tuples

fTup : Nat -> (Nat, Nat)
fTup x = (X, X)

gUse : Bool -> Nat -> (Nat, Nat)
gUse b X

= let z = fTup x
in /lif b then z else (0, 0)

A single variable binds a tuple containing

two values. This implies we have allocated
a container object.

All returned values must be bound explicitly

fVec : [Nat] :-> [Nat, Nat]
fVec [x] = Lﬁgmﬁﬂ
When It returns two values..

gUse : [Bool, Nat] :-> [Nat, Nat]
gUse [b, Xx]
= let [zl, z2] = fVec [X]

in if b then [zl, z2] else [0, 0]

.. we must bind two values
.. and there is no intermediate allocation.

Polymorphism

gXX : Bool -> Va. a -> a -> a
gXX (b:Bool) @a (x:a)
= Ay:a. if b then x else y

gYY : [Bool] :-=> [[a] :*> [[a, a] :=> [a]]]
gYY [b:Bool]
= [Ala]. [A[x,y]. if b then [x] else [y]]

Parameter/Return vectors vs GHC UnboxedTuples

This works in GHC
f xy = (# xt1, y-1 #)
g X = case f x x of
{(#alb#) _>a+b}

.. but this does not:
g :: (# Int, Int #) -> Int
g (# a, b #) = a

... as it wants to be sugar for:

g :: (# Int, Int #) -> Int
gi=casexof{(#a,b#) -> a }

Types are calling conventions

Max Bolingbroke

University of Cambridge
mb566@cam.ac.uk

Abstract

It is common for compilers to derive the calling convention of a
function from its type. Doing so is simple and modular but misses
many optimisation opportunities, particularly in lazy, higher-order
functional languages with extensive use of currying. We restore the
lost opportunities by defining Strict Core, a new intermediate lan-
guage whose type system makes the missing distinctions: laziness
is explicit, and functions take multiple arguments and return multi-
ple results.

1. Introduction

In the implementation of a lazy functional programming language,
imagine that you are given the following function:

f i Int — Bool — (Int, Bool)

How would you go about actually executing an application of f to
two arguments? There are many factors to consider:

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

In this paper we take a more systematic approach. We outline
a new intermediate language for a compiler for a purely functional
programming language, that is designed to encode the most impor-
tant aspects of a function’s calling convention directly in the type
system of a concise lambda calculus with a simple operational se-
mantics.

e We present Strict Core, a typed intermediate language whose
types are rich enough to describe all the calling conventions
that our experience with GHC has convinced us are valuable
(Section 3). For example, Strict Core supports uncurried func-
tions symmetrically, with both multiple arguments and multiple
results.

e We show how to translate a lazy functional language like
Haskell into Strict Core (Section 4). The source language,
which we call FH, contains all the features that we are inter-
ested in compiling well — laziness, parametric polymorphism,
higher-order functions and so on.

In Haskell Symposium’2009

(TP

weungs f0 11111111, 8

04 Bl | -

y

L] discus-lang / salt

<> Code

Issues 1

Pullrequests Issues Marketplace Explore

®watch~ 7 * Star

Pull requests 0 Projects 0 Wiki Insights Settings

The compilation target that functional programmers always wanted.

language

D 281 commits

functional low-level

compiler compilation target lambda-calculus Manage topics

¥ 1branch © 0 releases

32

Y Fork 2

Edit

22 3 contributors

Branch: master v

‘ benl23x5 core: be consistent about default branches across if/case term and pr...

i bin

8 doc

B make

B src

i test

E .gitignore

E) Makefile

El README.md
E) package.yaml
E salt.cabal

E) stack.yaml

README.md

New pull request

Create new file Upload files = Find file

Adding bin/ directory and dummy file to keep it.

core: be consistent about default branches across if/case term and pr...
make: go to XStrict by default

core: be consistent about default branches across if/case term and pr...
core: more proc parsing, and pull out 'else' branch of term 'if' so i...
add stack.yaml to get intero/ghcid support

Property tests: "make waves"

readme: copy edits

make: go to XStrict by default

more readme

add stack.yaml to get intero/ghcid support

Salt Intermediate Language

Salt is what you get when you leave C out in the sun for too long.

Salt is the compilation target that functional programmers always wanted.

Clone or download ~

Latest commit a1fc90@ 4 hours ago

3 months ago
4 hours ago
4 days ago

4 hours ago
5 hours ago
20 days ago
2 months ago
4 days ago

4 days ago

6 days ago
20 days ago

-

4

Salt is a System-F variant intended as an intermediate language between higher level languages and an abstract
assembly language (LLVM). Hand written code can also be used to implement runtime systems. The Disco Discus
Compiler uses an earlier version of Salt (v1), and its runtime system is written in it. This current repo contains a
newer version of Salt (v2) which is being split out into its own project. Salt v1 has a working LLVM backend, but
the one for v2 in this repo is still a work in progress.

Example

We have some small "Hello World" type examples and test cases, but no larger programs yet. See the demo and
syntax directories in this repo. The syntax looks like:

term reverse @[a: #Data] [xx: #List al: #List a
= case #list'case @ xx of

{ nil

[1 - [list al]

