The aim is to understand this:
In category theory, the concept of catamorphism denotes the unique homomorphism from an initial algebra into some other algebra.

To better understand this:
In functional programming, catamorphisms provide generalizations of folds of lists to arbitrary algebraic data types, which can be described as initial algebras. The dual concept is that of anamorphism that generalize unfolds. A hylomorphism is the composition of an anamorphism followed by a catamorphism.

- Basic category theory
- Basic category theory
- Haskell as a category (if you squint)
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Algebras over an endofunctor
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Algebras over an endofunctor
- F-Algebra homomorphisms, or arrows in the category of F-algebras
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Algebras over an endofunctor
- F-Algebra homomorphisms, or arrows in the category of F-algebras
- Initial objects
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Algebras over an endofunctor
- F-Algebra homomorphisms, or arrows in the category of F-algebras
- Initial objects
- Catamorphisms as unique homomorphisms from initial objects
- Basic category theory
- Haskell as a category (if you squint)
- Category theoretic functors, Haskell Functors endofunctors
- Algebras over an endofunctor
- F-Algebra homomorphisms, or arrows in the category of F-algebras
- Initial objects
- Catamorphisms as unique homomorphisms from initial objects
- Flip the arrows

What's a category?

Pick some things:

- Objects (X,Y,Z)

Assert some properties:

What's a category?

Pick some things:

- Objects (X,Y,Z)
- Arrows between objects $(f, g, g \circ f)$

Assert some properties:

What's a category?

Pick some things:

- Objects (X,Y,Z)
- Arrows between objects ($\mathrm{f}, \mathrm{g}, \mathrm{g} \circ \mathrm{f}$)

Assert some properties:

- All arrows compose associatively

What's a category?

Pick some things:

- Objects (X,Y,Z)
- Arrows between objects ($\mathrm{f}, \mathrm{g}, \mathrm{g} \circ \mathrm{f}$)

Assert some properties:

- All arrows compose associatively
- Every object has an identity arrow

What's a category?

Pick some things:

- Objects (X,Y,Z)
- Arrows between objects ($\mathrm{f}, \mathrm{g}, \mathrm{g} \circ \mathrm{f}$)

Assert some properties:

- All arrows compose associatively
- Every object has an identity arrow

What's a category?

Pick some things:

- Objects (X,Y,Z)
- Arrows between objects (f,g,g $\circ f$)

Assert some properties:

- All arrows compose associatively
- Every object has an identity arrow

Figure 1:

Haskell as sort of a category

Pick some things:

- Objects are types (not values!)

Assert some properties:

```
(.) :: (b -> c) -> (a -> b) -> a -> c
id : : a -> a
```

NB: it's lies, all lies!

```
seq undefined () = undefined
seq (undefined . id) () = ()
```


Haskell as sort of a category

Pick some things:

- Objects are types (not values!)
- Arrows are functions between types

Assert some properties:

```
(.) :: (b -> c) -> (a -> b) -> a \(->\mathrm{c}\)
id : : a -> a
```

NB: it's lies, all lies!

```
seq undefined () = undefined
seq (undefined . id) () = ()
```


Haskell as sort of a category

Pick some things:

- Objects are types (not values!)
- Arrows are functions between types

Assert some properties:

- All arrows compose associatively

```
(.) :: (b -> c) -> (a -> b) -> a \(->\mathrm{c}\)
id : : a -> a
```

NB: it's lies, all lies!

```
seq undefined () = undefined
seq (undefined . id) () = ()
```


Haskell as sort of a category

Pick some things:

- Objects are types (not values!)
- Arrows are functions between types

Assert some properties:

- All arrows compose associatively
- Every object has an identity arrow

```
(.) ::(b -> c) -> (a -> b) -> a -> c
id :: a -> a
```

NB: it's lies, all lies!

```
seq undefined () = undefined
seq (undefined . id) () = ()
```


Functors, endofunctors

A functor is a mapping between categories that sends objects to objects (types to types) and arrows to arrows (terms to terms), preserving identity arrows and composition, possibly across categories.

```
fmap id = id
fmap f . fmap g = fmap (f . g)
```

Endofunctors map from a category to the same category.
In the case of Hask:

```
class Functor (f :: * -> *) where
    fmap :: (a -> b) -> f a -> f b
```


Algebra "over" an endofunctor

For a category C and endofunctor F an algebra of F is an object X in C and a morphism:

$$
\text { alg }: F(X) \rightarrow X
$$

X is called the "carrier" of the algebra.

```
-- For a category and endofunctor
data F a = Zero | Succ a
instance Functor F where
    fmap _ Zero = Zero 
```

-- An algebra of F is an X in C
type $\mathrm{X}=$ Natural
-- And a morphism
alg : F X -> X
alg Zero $=0$
alg (Succ n$)=\mathrm{n}+1$

```
data F a = Zero | Succ a
alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1
> alg Zero
0
> alg $ Succ $ alg Zero
1
> alg $ Succ $ alg $ Succ $ alg Zero
2
```

```
alg' :: F String -> String
alg' Zero = "!"
alg' (Succ s) = "QUACK" ++ s
> alg' $ Succ $ alg' $ Succ $ alg' Zero
"QUACKQUACK!"
```

An initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I $\rightarrow X$. - Wikipedia
(up to isomorphism)

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...
- Arrows : structure preserving maps (homomorphisms) from an algebra to another

Homomorphisms between two algebras.

An arrow in the category of F-algebras of a given endofunctor e.g. between (Natural, alg) and (String, alg') is a function mapping the carrier in the underlying category (Hask, hom : Natural -> String), such that the following square commutes:

Figure 2:

That is to say that

```
fNat :: F Natural 
fNat :: F Natural 
hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"
> alg fNat -- 2
> fmap hom fNat -- Succ "QUACK!"
> hom $ alg fNat -- "QUACKQUACK!"
> alg' $ fmap hom fNat -- "QUACKQUACK!"
```

hom \circ alg \equiv alg ${ }^{\prime} \circ$ fmap hom

Figure 3:

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...
- Arrows : structure preserving maps (homomorphisms) from an algebra to another

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...
- Arrows : structure preserving maps (homomorphisms) from an algebra to another

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in the category of algebras of F.

Category of algebras of F:

- Objects: alg, alg', ...
- Arrows : structure preserving maps (homomorphisms) from an algebra to another

Initial:

- There is a unique morphism from the initial algebra to all other algebras.
- The carrier must not "lose" any information, or there is some algebra that it cannot map to.

Figure 4:

What fits?

- The carrier must not "lose" any information, or there is some algebra that it cannot map to.
- The carrier can't add information, or the morphism won't be unique.

$$
X \text { initial } \Longrightarrow F(X) \cong X
$$

Figure 4:

What fits?

- The carrier must not "lose" any information, or there is some algebra that it cannot map to.
- The carrier can't add information, or the morphism won't be unique.
- The algebra must have type: F InitF -> InitF

$$
X \text { initial } \Longrightarrow F(X) \cong X
$$

Figure 4:

What fits?

- The carrier must not "lose" any information, or there is some algebra that it cannot map to.
- The carrier can't add information, or the morphism won't be unique.
- The algebra must have type: F InitF -> InitF
- Lambek's theorem says that if there is an initial object, it is isomorphic to the carrier via the algebra

$$
X \text { initial } \Longrightarrow F(X) \cong X
$$

Figure 4:

What fits?

- The carrier must not "lose" any information, or there is some algebra that it cannot map to.
- The carrier can't add information, or the morphism won't be unique.
- The algebra must have type: F InitF -> InitF
- Lambek's theorem says that if there is an initial object, it is isomorphic to the carrier via the algebra
- data InitF $=\operatorname{lnitF}(F \operatorname{lnitF})$

$$
X \text { initial } \Longrightarrow F(X) \cong X
$$

Figure 4:

More generally. . .

More generally. . .

```
data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF
```


More generally. . .

```
data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF
```

fix2 :: InitF
fix2 $=$ Roll \$ Succ \$ Roll \$ Succ \$ Roll Zero

More generally. . .

```
data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF
```

fix2 :: InitF
fix2 = Roll \$ Succ \$ Roll \$ Succ \$ Roll Zero

If this is the initial object in the category of algebras, there must be a unique arrow from InitF to every algebra:

$$
\text { Valgebras } \exists \text { hom : InitF } \rightarrow \text { carrier of algebra }
$$

$\forall a l g e b r a s ~ \exists h o m ~: ~ I n i t F ~ \rightarrow c a r r i e r ~ o f ~ a l g e b r a ~$

Figure 5:
$\forall a l g e b r a s ~ \exists h o m ~: ~ I n i t F ~ \rightarrow ~ c a r r i e r ~ o f ~ a l g e b r a ~$

Figure 5:
$\forall a l g e b r a s ~ \exists h o m ~: ~ I n i t F ~ \rightarrow ~ c a r r i e r ~ o f ~ a l g e b r a ~$

$$
\begin{aligned}
& \text { Roll : : F InitF } \rightarrow \text { InitF } \\
& \text { hom : : InitF } \rightarrow \text { Natural }
\end{aligned}
$$

Figure 5:
\forall algebras \exists hom : InitF \rightarrow carrier of algebra
 unRoll : : InitF -> F InitF

Figure 6:

$$
\forall \text { algebras } \exists \text { hom : InitF } \rightarrow \text { carrier of algebra }
$$

unRoll : : InitF -> F InitF

```
hom :: InitF -> Natural
hom = alg . fmap hom . unRoll
```

Figure 6:
algebras $\exists h o m: I n i t F \rightarrow$ carrier of algebra

Figure 6:

```
unRoll :: InitF -> F InitF
```

```
hom :: InitF -> Natural
hom = alg . fmap hom . unRoll
```

```
cata :: Functor f
    => (f a -> a) -> Fix f -> a
cata alg =
    alg . fmap (cata alg) . unRoll
```

nom = cata alg

Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& \quad=>(f \text { a }->\text { a) }->\text { Fix f }->\text { a } \\
& \text { cata alg }= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& \quad=>\text { (f a }->\text { a) -> Fix f }->\text { a } \\
& \text { cata alg }= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alg : : F Natural -> Natural } \\
& \text { alg Zero }=0 \\
& \text { alg }(\text { Succ } n)=n+1
\end{aligned}
$$

```
cata alg (Roll $ Succ $ Roll Zero)
```


Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& =>(f \text { a }->\text { a) -> Fix f }->\text { a } \\
& \text { cata } a l g= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alg : : F Natural -> Natural } \\
& \text { alg Zero }=0 \\
& \text { alg }(\text { Succ } n)=n+1
\end{aligned}
$$

```
cata alg (Roll $ Succ $ Roll Zero)
```

```
alg $ fmap (cata alg) (Succ $ Roll Zero)
```


Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& \quad=>(f a->a)->\text { Fix f }->a \\
& \text { cata alg }= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alg :: F Natural -> Natural } \\
& \text { alg Zero }=0 \\
& \text { alg }(\text { Succ } n)=n+1
\end{aligned}
$$

Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& \quad=>(f a->a)->\text { Fix f }->a \\
& \text { cata alg }= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alg :: F Natural -> Natural } \\
& \text { alg Zero }=0 \\
& \text { alg }(\text { Succ } n)=n+1
\end{aligned}
$$

Evaluation of cata

$$
\begin{aligned}
& \text { cata : : Functor f } \\
& \quad=>(f a->a)->\text { Fix f }->\text { a } \\
& \text { cata alg }= \\
& \text { alg . fmap (cata alg) . unRoll }
\end{aligned}
$$

$$
\begin{aligned}
& \text { alg :: F Natural -> Natural } \\
& \text { alg Zero }=0 \\
& \text { alg }(\text { Succ } n)=n+1
\end{aligned}
$$

alg \$ fmap (cata alg) (Succ \$ Roll Zero)
alg \$ Succ \$ cata alg \$ Roll Zero
alg \$ Succ \$ alg \$ fmap (cata alg) Zero
alg \$ Succ \$ alg \$ Zero

This is recursion in a general sense
data Nat a = Succ a | Zero

This is recursion in a general sense
data Nat a = Succ a | Zero
data String a Cons Char a | End
data Nat a = Succ a | Zero
data String a = Cons Char a | End
data BinaryTree a = Branch a a | Tip
data Nat a = Succ a | Zero
data String a = Cons Char a | End
data BinaryTree a = Branch a a | Tip
data RoseTree a = Branches [a] | Tip
data Nat a = Succ a | Zero
data String a = Cons Char a | End
data BinaryTree a $=$ Branch a a | Tip
data RoseTree a = Branches [a] | Tip
data Group a = Action a a | Inv a | Unit

Hutton's razor - final tagless

```
class Calculator a where
    lit :: Int -> a
    add :: a -> a -> a
    mult :: a -> a -> a
instance Calculator Int where
    lit = id
    add = (+)
    mult = (*)
instance Calculator String where
    lit = show
    add s1 s2 = s1 ++ " + " ++ s2
    mult s1 s2 = s1 ++ " x " ++ s2
```


Hutton's razor - F algebra

data Calculator a = Lit Int | Add a a | Mult a a deriving Functor

```
evalAlg :: Calculator Int -> Int
evalAlg (Lit i) = i
evalAlg (Add i1 i2) = i1 + i2
evalAlg (Mult i1 i2) = i1 * i2
```

ppAlg :: Calculator String -> String
ppAlg (Lit i) = show i
ppAlg (Add s1 s2) = s1 ++ " + " ++ s2
ppAlg (Mult s1 s2) = s1 ++ " x " ++ s2
pp : : Fix Calculator -> String
pp = cata ppAlg

Damn the torpedos, flip the arrows

```
alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1
```


Damn the torpedos, flip the arrows

```
alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1
```

coalg : : Natural -> F Natural
coalg 0 = Zero
coalg $\mathrm{n}=\operatorname{Succ}(\mathrm{n}-1)$

Damn the torpedos, flip the arrows

```
alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1
```

coalg : : Natural -> F Natural
coalg $0=$ Zero
coalg $n=\operatorname{Succ}(n-1)$

For a category C and endofunctor F a co-algebra of F is an object X in C and a morphism:

$$
\text { coalg : } X \rightarrow F(X)
$$

Figure 7:

Morphisms on coalgebras: co all of the things!

Figure 7:

Figure 8:


```
coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)
```

Figure 9:
$F($ Natural $) \stackrel{F\left(\text { hom }^{\prime}\right)}{\rightleftarrows} F($ String $)$

$$
\text { Natural } \stackrel{\text { hom }^{\prime}}{ } \text { String }
$$

Figure 9:

```
coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)
```

coalg' : : String -> F String
coalg' "!" =
Zero
coalg' ('Q':'U':'A':'C':'K':xs) =
Succ xs

hom : : Natural -> String
hom $\mathrm{n}=$ timesN n "QUACK" ++ "!"

Figure 10:

Figure 10:
hom : : Natural -> String
hom $\mathrm{n}=$ timesN n "QUACK" ++ "!"

```
hom' :: String -> Natural
hom' str =
    (fromIntegral (length str) - 1)
    `div` 5
```

E.g.


```
hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"
```

hom' : : String -> Natural
hom' str =
(fromIntegral (length str) - 1)
`div` 5

Figure 10:
> (hom' "QUACKQUACK!", coalg' "QUACKQUACK!")
(2, Succ "QUACK!")
> (coalg \$ hom' "QUACKQUACK!", fmap hom' \$ coalg' "QUACKQUACK!")
(Succ 1, Succ 1)
\forall algebras $\exists h o m:$ carrier of algebra \rightarrow TermF

Figure 11:
\forall algebras \exists hom : carrier of algebra \rightarrow TermF


```
type TermF = InitF
    unRoll :: TermF -> F TermF
```

Figure 11:
\forall algebras \exists hom : carrier of algebra \rightarrow TermF


```
type TermF = InitF
unRoll :: TermF -> F TermF
hom' :: Natural -> TermF
```

Figure 11:
\forall algebras \exists hom : carrier of algebra \rightarrow TermF
Roll : : F TermF -> TermF

Figure 12:
\forall algebras \exists hom : carrier of algebra \rightarrow TermF
Roll : : F TermF -> TermF

$$
\text { TermF } \underset{\text { hom }^{\prime}}{ } \text { Natural }
$$

hom' : : Natural -> TermF

Figure 12:
\forall algebras \exists hom : carrier of algebra \rightarrow TermF

Figure 12:
\forall algebras $\exists h o m:$ carrier of algebra \rightarrow TermF

$$
\begin{aligned}
& \text { Roll : : F TermF } \rightarrow \text { TermF } \\
& \text { hom' : : Natural } \rightarrow \text { TermF } \\
& \text { hom' }=\text { Roll . fmap hom' . coalg } \\
& \text { ana : : Functor f } \\
& \text { => (a -> f a) -> a -> Fix f } \\
& \text { ana coalg = } \\
& \text { Roll . fmap (ana coalg) . f }
\end{aligned}
$$

Figure 12:

```
cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll
ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg
```


Whilst we're here

```
cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll
ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg
```

```
cata alg' $ ana coalg' $ hom 3
> "QUACKQUACKQUACK!"
```

Whilst we're here
cata : : Functor $f=>(f$ a $->$ a) $->$ InitF $->a$
cata alg = alg . fmap (cata alg) . unRoll
ana : : Functor $f=>(a->f a)->a->$ TermF
ana coalg $=$ Roll . fmap (ana coalg) . coalg
cata alg' \$ ana coalg' \$ hom 3
"QUACKQUACKQUACK!"
hylo : : Functor $f=>(f \quad b->b) \rightarrow(a->f a)->a->b$ hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

Whilst we're here
cata : : Functor $f=>(f$ a $->$ a) $->$ InitF $->a$
cata alg = alg . fmap (cata alg) . unRoll
ana : : Functor $f=>(a->f a)->a->$ TermF
ana coalg $=$ Roll . fmap (ana coalg) . coalg
cata alg' \$ ana coalg' \$ hom 3
"QUACKQUACKQUACK!"
hylo : : Functor $f=>(f \quad b->b) \rightarrow(a->f a)->a->b$ hylo alg coalg = alg . fmap (hylo alg coalg) . coalg
hylo alg' coalg' \$ hom 3
> "QUACKQUACKQUACK!"

