
The roadmap

The aim is to understand this:

In category theory, the concept of catamorphism denotes the unique
homomorphism from an initial algebra into some other algebra.

To better understand this:

In functional programming, catamorphisms provide generalizations of
folds of lists to arbitrary algebraic data types, which can be described
as initial algebras. The dual concept is that of anamorphism that
generalize unfolds. A hylomorphism is the composition of an
anamorphism followed by a catamorphism.

1 / 28

The outline

I Basic category theory

I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)

I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors

I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor

I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras

I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects

I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects

I Flip the arrows

2 / 28

The outline

I Basic category theory
I Haskell as a category (if you squint)
I Category theoretic functors, Haskell Functors endofunctors
I Algebras over an endofunctor
I F-Algebra homomorphisms, or arrows in the category of F-algebras
I Initial objects
I Catamorphisms as unique homomorphisms from initial objects
I Flip the arrows

2 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)

I Arrows between objects (f,g,g ◦ f)

Assert some properties:

I All arrows compose associatively
I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)
I Arrows between objects (f,g,g ◦ f)

Assert some properties:

I All arrows compose associatively
I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)
I Arrows between objects (f,g,g ◦ f)

Assert some properties:
I All arrows compose associatively

I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)
I Arrows between objects (f,g,g ◦ f)

Assert some properties:
I All arrows compose associatively
I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)
I Arrows between objects (f,g,g ◦ f)

Assert some properties:
I All arrows compose associatively
I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

What’s a category?

Pick some things:
I Objects (X,Y,Z)
I Arrows between objects (f,g,g ◦ f)

Assert some properties:
I All arrows compose associatively
I Every object has an identity arrow

X Y

Z

f
idX

g

idY

g ◦ f

idZ

Figure 1:

3 / 28

Haskell as sort of a category
Pick some things:

I Objects are types (not values!)

I Arrows are functions between types

Assert some properties:

I All arrows compose associatively
I Every object has an identity arrow

(.) :: (b -> c) -> (a -> b) -> a -> c
id :: a -> a

NB: it’s lies, all lies!

seq undefined () = undefined
seq (undefined . id) () = () 4 / 28

Haskell as sort of a category
Pick some things:

I Objects are types (not values!)
I Arrows are functions between types

Assert some properties:

I All arrows compose associatively
I Every object has an identity arrow

(.) :: (b -> c) -> (a -> b) -> a -> c
id :: a -> a

NB: it’s lies, all lies!

seq undefined () = undefined
seq (undefined . id) () = () 4 / 28

Haskell as sort of a category
Pick some things:

I Objects are types (not values!)
I Arrows are functions between types

Assert some properties:
I All arrows compose associatively

I Every object has an identity arrow

(.) :: (b -> c) -> (a -> b) -> a -> c
id :: a -> a

NB: it’s lies, all lies!

seq undefined () = undefined
seq (undefined . id) () = () 4 / 28

Haskell as sort of a category
Pick some things:

I Objects are types (not values!)
I Arrows are functions between types

Assert some properties:
I All arrows compose associatively
I Every object has an identity arrow

(.) :: (b -> c) -> (a -> b) -> a -> c
id :: a -> a

NB: it’s lies, all lies!

seq undefined () = undefined
seq (undefined . id) () = () 4 / 28

Functors, endofunctors
A functor is a mapping between categories that sends objects to objects (types
to types) and arrows to arrows (terms to terms), preserving identity arrows
and composition, possibly across categories.

fmap id = id
fmap f . fmap g = fmap (f . g)

Endofunctors map from a category to the same category.
In the case of Hask:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

5 / 28

Algebra “over” an endofunctor

For a category C and endofunctor F an
algebra of F is an object X in C and a
morphism:

alg : F (X)→ X

X is called the “carrier” of the algebra.

-- For a category and endofunctor
data F a = Zero | Succ a

instance Functor F where
fmap _ Zero = Zero
fmap f (Succ a) = Succ (f a)

-- An algebra of F is an X in C
type X = Natural

-- And a morphism
alg :: F X -> X
alg Zero = 0
alg (Succ n) = n + 1 6 / 28

F Natural -> Natural

data F a = Zero | Succ a

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

> alg Zero
0
> alg $ Succ $ alg Zero
1
> alg $ Succ $ alg $ Succ $ alg Zero
2

7 / 28

An alternate algebra, same F and C, different X

alg' :: F String -> String
alg' Zero = "!"
alg' (Succ s) = "QUACK" ++ s

> alg' $ Succ $ alg' $ Succ $ alg' Zero
"QUACKQUACK!"

8 / 28

Prescient fun fact

An initial object of a category C is an object I in C such that for every
object X in C, there exists precisely one morphism I → X. - Wikipedia

(up to isomorphism)

9 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.

Category of algebras of F:

I Objects: alg, alg’, . . .
I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

10 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .

I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

10 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .
I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

10 / 28

Homomorphisms between two algebras.
An arrow in the category of F-algebras of a given endofunctor e.g. between
(Natural, alg) and (String, alg’) is a function mapping the carrier in the
underlying category (Hask, hom : Natural -> String), such that the following
square commutes:

F (Natural) F (String)

Natural String

F (hom)

alg

hom

alg′

Figure 2:
11 / 28

That is to say that

fNat :: F Natural
fNat = Succ 1

hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"

> alg fNat -- 2
> fmap hom fNat -- Succ "QUACK!"
> hom $ alg fNat -- "QUACKQUACK!"
> alg' $ fmap hom fNat -- "QUACKQUACK!"

hom ◦ alg ≡ alg ′ ◦ fmap hom

F (Natural) F (String)

Natural String

F (hom)

alg

hom

alg′

Figure 3:

12 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .

I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

Initial:

I There is a unique morphism from the initial algebra to all other algebras.

13 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .
I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

Initial:

I There is a unique morphism from the initial algebra to all other algebras.

13 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .
I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

Initial:

I There is a unique morphism from the initial algebra to all other algebras.

13 / 28

Initial, in the category of algebras

An initial algebra for an endofunctor F on a category C is an initial object in
the category of algebras of F.
Category of algebras of F:

I Objects: alg, alg’, . . .
I Arrows : structure preserving maps (homomorphisms) from an algebra to
another

Initial:

I There is a unique morphism from the initial algebra to all other algebras.

13 / 28

What fits?

I The carrier must not “lose” any
information, or there is some
algebra that it cannot map to.

I The carrier can’t add information,
or the morphism won’t be unique.

I The algebra must have type: F
InitF -> InitF

I Lambek’s theorem says that if
there is an initial object, it is
isomorphic to the carrier via the
algebra

I data InitF = InitF (F InitF)

X initial =⇒ F (X) ∼= X

F InitF F (String)

InitF String

F (hom)

alg

hom

alg′

Figure 4:

14 / 28

What fits?

I The carrier must not “lose” any
information, or there is some
algebra that it cannot map to.

I The carrier can’t add information,
or the morphism won’t be unique.

I The algebra must have type: F
InitF -> InitF

I Lambek’s theorem says that if
there is an initial object, it is
isomorphic to the carrier via the
algebra

I data InitF = InitF (F InitF)

X initial =⇒ F (X) ∼= X

F InitF F (String)

InitF String

F (hom)

alg

hom

alg′

Figure 4:

14 / 28

What fits?

I The carrier must not “lose” any
information, or there is some
algebra that it cannot map to.

I The carrier can’t add information,
or the morphism won’t be unique.

I The algebra must have type: F
InitF -> InitF

I Lambek’s theorem says that if
there is an initial object, it is
isomorphic to the carrier via the
algebra

I data InitF = InitF (F InitF)

X initial =⇒ F (X) ∼= X

F InitF F (String)

InitF String

F (hom)

alg

hom

alg′

Figure 4:

14 / 28

What fits?

I The carrier must not “lose” any
information, or there is some
algebra that it cannot map to.

I The carrier can’t add information,
or the morphism won’t be unique.

I The algebra must have type: F
InitF -> InitF

I Lambek’s theorem says that if
there is an initial object, it is
isomorphic to the carrier via the
algebra

I data InitF = InitF (F InitF)

X initial =⇒ F (X) ∼= X

F InitF F (String)

InitF String

F (hom)

alg

hom

alg′

Figure 4:

14 / 28

What fits?

I The carrier must not “lose” any
information, or there is some
algebra that it cannot map to.

I The carrier can’t add information,
or the morphism won’t be unique.

I The algebra must have type: F
InitF -> InitF

I Lambek’s theorem says that if
there is an initial object, it is
isomorphic to the carrier via the
algebra

I data InitF = InitF (F InitF)

X initial =⇒ F (X) ∼= X

F InitF F (String)

InitF String

F (hom)

alg

hom

alg′

Figure 4:

14 / 28

More generally. . .

data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF

fix2 :: InitF
fix2 = Roll $ Succ $ Roll $ Succ $ Roll Zero

If this is the initial object in the category of algebras, there must be a unique
arrow from InitF to every algebra:

∀algebras ∃hom : InitF → carrier of algebra

15 / 28

More generally. . .

data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF

fix2 :: InitF
fix2 = Roll $ Succ $ Roll $ Succ $ Roll Zero

If this is the initial object in the category of algebras, there must be a unique
arrow from InitF to every algebra:

∀algebras ∃hom : InitF → carrier of algebra

15 / 28

More generally. . .

data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF

fix2 :: InitF
fix2 = Roll $ Succ $ Roll $ Succ $ Roll Zero

If this is the initial object in the category of algebras, there must be a unique
arrow from InitF to every algebra:

∀algebras ∃hom : InitF → carrier of algebra

15 / 28

More generally. . .

data Fix f = Roll { unRoll :: f (Fix f) }
type InitF = Fix F
Roll :: F InitF -> InitF
unRoll :: InitF -> F InitF

fix2 :: InitF
fix2 = Roll $ Succ $ Roll $ Succ $ Roll Zero

If this is the initial object in the category of algebras, there must be a unique
arrow from InitF to every algebra:

∀algebras ∃hom : InitF → carrier of algebra
15 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

Roll

hom

alg

Figure 5:

Roll :: F InitF -> InitF

hom :: InitF -> Natural

16 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

Roll

hom

alg

Figure 5:

Roll :: F InitF -> InitF

hom :: InitF -> Natural

16 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

Roll

hom

alg

Figure 5:

Roll :: F InitF -> InitF

hom :: InitF -> Natural

16 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

unRoll

hom

alg

Figure 6:

unRoll :: InitF -> F InitF

hom :: InitF -> Natural
hom = alg . fmap hom . unRoll

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

hom = cata alg

17 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

unRoll

hom

alg

Figure 6:

unRoll :: InitF -> F InitF

hom :: InitF -> Natural
hom = alg . fmap hom . unRoll

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

hom = cata alg

17 / 28

The unique homomorphism

∀algebras ∃hom : InitF → carrier of algebra

F InitF F (Natural)

InitF Natural

F (hom)

unRoll

hom

alg

Figure 6:

unRoll :: InitF -> F InitF

hom :: InitF -> Natural
hom = alg . fmap hom . unRoll

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

hom = cata alg 17 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero

18 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero

18 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero

18 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero

18 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero

18 / 28

Evaluation of cata

cata :: Functor f
=> (f a -> a) -> Fix f -> a

cata alg =
alg . fmap (cata alg) . unRoll

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

cata alg (Roll $ Succ $ Roll Zero)

alg $ fmap (cata alg) (Succ $ Roll Zero)

alg $ Succ $ cata alg $ Roll Zero

alg $ Succ $ alg $ fmap (cata alg) Zero

alg $ Succ $ alg $ Zero
18 / 28

This is recursion in a general sense

data Nat a = Succ a | Zero

data String a = Cons Char a | End

data BinaryTree a = Branch a a | Tip

data RoseTree a = Branches [a] | Tip

data Group a = Action a a | Inv a | Unit

19 / 28

This is recursion in a general sense

data Nat a = Succ a | Zero

data String a = Cons Char a | End

data BinaryTree a = Branch a a | Tip

data RoseTree a = Branches [a] | Tip

data Group a = Action a a | Inv a | Unit

19 / 28

This is recursion in a general sense

data Nat a = Succ a | Zero

data String a = Cons Char a | End

data BinaryTree a = Branch a a | Tip

data RoseTree a = Branches [a] | Tip

data Group a = Action a a | Inv a | Unit

19 / 28

This is recursion in a general sense

data Nat a = Succ a | Zero

data String a = Cons Char a | End

data BinaryTree a = Branch a a | Tip

data RoseTree a = Branches [a] | Tip

data Group a = Action a a | Inv a | Unit

19 / 28

This is recursion in a general sense

data Nat a = Succ a | Zero

data String a = Cons Char a | End

data BinaryTree a = Branch a a | Tip

data RoseTree a = Branches [a] | Tip

data Group a = Action a a | Inv a | Unit

19 / 28

Hutton’s razor - final tagless
class Calculator a where

lit :: Int -> a
add :: a -> a -> a
mult :: a -> a -> a

instance Calculator Int where
lit = id
add = (+)
mult = (*)

instance Calculator String where
lit = show
add s1 s2 = s1 ++ " + " ++ s2
mult s1 s2 = s1 ++ " x " ++ s2

20 / 28

Hutton’s razor - F algebra

data Calculator a = Lit Int | Add a a | Mult a a deriving Functor

evalAlg :: Calculator Int -> Int
evalAlg (Lit i) = i
evalAlg (Add i1 i2) = i1 + i2
evalAlg (Mult i1 i2) = i1 * i2

ppAlg :: Calculator String -> String
ppAlg (Lit i) = show i
ppAlg (Add s1 s2) = s1 ++ " + " ++ s2
ppAlg (Mult s1 s2) = s1 ++ " x " ++ s2

pp :: Fix Calculator -> String
pp = cata ppAlg

21 / 28

Damn the torpedos, flip the arrows

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)

For a category C and endofunctor F a
co-algebra of F is an object X in C and
a morphism:

coalg : X → F (X)

22 / 28

Damn the torpedos, flip the arrows

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)

For a category C and endofunctor F a
co-algebra of F is an object X in C and
a morphism:

coalg : X → F (X)

22 / 28

Damn the torpedos, flip the arrows

alg :: F Natural -> Natural
alg Zero = 0
alg (Succ n) = n + 1

coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)

For a category C and endofunctor F a
co-algebra of F is an object X in C and
a morphism:

coalg : X → F (X)

22 / 28

Morphisms on coalgebras: co all of the things!

F (Natural) F (String)

Natural String

F (hom)

alg

hom

alg′

Figure 7:

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 8:

23 / 28

Morphisms on coalgebras: co all of the things!

F (Natural) F (String)

Natural String

F (hom)

alg

hom

alg′

Figure 7:

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 8:

23 / 28

E.g.

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 9:

coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)

coalg' :: String -> F String
coalg' "!" =

Zero
coalg' ('Q':'U':'A':'C':'K':xs) =

Succ xs

24 / 28

E.g.

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 9:

coalg :: Natural -> F Natural
coalg 0 = Zero
coalg n = Succ (n - 1)

coalg' :: String -> F String
coalg' "!" =

Zero
coalg' ('Q':'U':'A':'C':'K':xs) =

Succ xs

24 / 28

E.g.

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 10:

hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"

hom' :: String -> Natural
hom' str =

(fromIntegral (length str) - 1)
`div` 5

> (hom' "QUACKQUACK!", coalg' "QUACKQUACK!")
(2, Succ "QUACK!")
> (coalg $ hom' "QUACKQUACK!", fmap hom' $ coalg' "QUACKQUACK!")
(Succ 1, Succ 1)

25 / 28

E.g.

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 10:

hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"

hom' :: String -> Natural
hom' str =

(fromIntegral (length str) - 1)
`div` 5

> (hom' "QUACKQUACK!", coalg' "QUACKQUACK!")
(2, Succ "QUACK!")
> (coalg $ hom' "QUACKQUACK!", fmap hom' $ coalg' "QUACKQUACK!")
(Succ 1, Succ 1)

25 / 28

E.g.

F (Natural) F (String)

Natural String

F (hom′)

coalg

hom′

coalg′

Figure 10:

hom :: Natural -> String
hom n = timesN n "QUACK" ++ "!"

hom' :: String -> Natural
hom' str =

(fromIntegral (length str) - 1)
`div` 5

> (hom' "QUACKQUACK!", coalg' "QUACKQUACK!")
(2, Succ "QUACK!")
> (coalg $ hom' "QUACKQUACK!", fmap hom' $ coalg' "QUACKQUACK!")
(Succ 1, Succ 1) 25 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

unRoll

hom′

coalg

Figure 11:

type TermF = InitF
unRoll :: TermF -> F TermF

hom' :: Natural -> TermF

26 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

unRoll

hom′

coalg

Figure 11:

type TermF = InitF
unRoll :: TermF -> F TermF

hom' :: Natural -> TermF

26 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

unRoll

hom′

coalg

Figure 11:

type TermF = InitF
unRoll :: TermF -> F TermF

hom' :: Natural -> TermF

26 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

Roll

hom′

coalg

Figure 12:

Roll :: F TermF -> TermF

hom' :: Natural -> TermF

hom' = Roll . fmap hom' . coalg

ana :: Functor f
=> (a -> f a) -> a -> Fix f

ana coalg =
Roll . fmap (ana coalg) . f

hom' = ana coalg

27 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

Roll

hom′

coalg

Figure 12:

Roll :: F TermF -> TermF

hom' :: Natural -> TermF

hom' = Roll . fmap hom' . coalg

ana :: Functor f
=> (a -> f a) -> a -> Fix f

ana coalg =
Roll . fmap (ana coalg) . f

hom' = ana coalg

27 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

Roll

hom′

coalg

Figure 12:

Roll :: F TermF -> TermF

hom' :: Natural -> TermF

hom' = Roll . fmap hom' . coalg

ana :: Functor f
=> (a -> f a) -> a -> Fix f

ana coalg =
Roll . fmap (ana coalg) . f

hom' = ana coalg

27 / 28

The unique homomorphism

∀algebras ∃hom : carrier of algebra → TermF

F TermF F (Natural)

TermF Natural

F (hom′)

Roll

hom′

coalg

Figure 12:

Roll :: F TermF -> TermF

hom' :: Natural -> TermF

hom' = Roll . fmap hom' . coalg

ana :: Functor f
=> (a -> f a) -> a -> Fix f

ana coalg =
Roll . fmap (ana coalg) . f

hom' = ana coalg
27 / 28

Whilst we’re here

cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll

ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg

cata alg' $ ana coalg' $ hom 3
> "QUACKQUACKQUACK!"

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

hylo alg' coalg' $ hom 3
> "QUACKQUACKQUACK!"

28 / 28

Whilst we’re here

cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll

ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg

cata alg' $ ana coalg' $ hom 3
> "QUACKQUACKQUACK!"

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

hylo alg' coalg' $ hom 3
> "QUACKQUACKQUACK!"

28 / 28

Whilst we’re here

cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll

ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg

cata alg' $ ana coalg' $ hom 3
> "QUACKQUACKQUACK!"

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

hylo alg' coalg' $ hom 3
> "QUACKQUACKQUACK!"

28 / 28

Whilst we’re here

cata :: Functor f => (f a -> a) -> InitF -> a
cata alg = alg . fmap (cata alg) . unRoll

ana :: Functor f => (a -> f a) -> a -> TermF
ana coalg = Roll . fmap (ana coalg) . coalg

cata alg' $ ana coalg' $ hom 3
> "QUACKQUACKQUACK!"

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

hylo alg' coalg' $ hom 3
> "QUACKQUACKQUACK!"

28 / 28

