
A Brief Look at Linear Types in GHC 8.4

Erik de Castro Lopo

July 28, 2017

State of Play

• GHC 8.2.1 was released this past weekend.

• GHC devs aim to release GHC 8.4 Q1 2018.

• 8.4 will have a new feature, Linear Types.

Work by

• Arnaud Spiwack (Tweag I/O).

• Jean-Philippe Bernary (U of Gothenburg).

• Edvard Hübinette (U of Gothenburg / GSoC / Tweag).

Current Status

• Working prototype at

https://github.com/tweag/linear-types/releases (paper/tarball)

https://github.com/tweag/ghc (linear-types branch).

• According to diffstat:

122 files changed, 1242 insertions(+), 813 deletions(-)

https://github.com/tweag/linear-types/releases
https://github.com/tweag/ghc

Don’t be Alarmed!

• Existing programs continue to typecheck.

• Existing data types can be used as-is.

• Linear types are opt-in.

Fundamental Idea

• A value with a Linear Type must be used exactly once.

• Not zero times, not more than once.

Naive Approach

xxnewtype Linear a = Linear a

• Still needs a compiler hack to bake in linearity.

• Doesn’t compose well.

• Would be painful to use.

A better approach

Linear Types Function Arrows

xxfunc :: a (b

• (is a sub class of the existing ->.

• Linearity-on-the-arrow supports linearity polymorphism.

• Functions can be written to work uniformly in both linear and non-linear code.

Unicode character U+22B8

Operationally

The Linear arrow guarantees that if

f x

is consumed exactly once, then the argument

x

is consumed exactly once.

Consume exactly once:

• To consume a value of atomic base type (like Int or Ptr)

exactly once, just evaluate it.

• To consume a function exactly once, apply it to one argument,

and consume its result exactly once.

• To consume a pair exactly once, pattern-match on it,

and consume each component exactly once.

• In general, to consume a value of an algebraic data type exactly once,

pattern-match on it, and consume all its linear components exactly once.

Developing Intuitions

Standard Haskell defines a function that returns the first element of a pair:

x

xxfst :: (a, b) (a

xxfst (a,) = a

Developing Intuitions

Standard Haskell defines a function that duplicates a value to returns a pair:

x

xxdup :: a ((a, a)

xxdup a = (a, a)

Linearity Polymorphism

List append example.

What does this buy us?

• Avoid memory allocation by updating in place.

• Resource management.

• Enforcing invariants in protocols.

• Safe replacement for unsafeFreeze.

• Safe mutable arrays.

Example: Linear map function

The good old map function but with the linear arrow.

x

xxlmap :: (a (b) -> [a] ([b]

xxlmap [] = []

xxlmap f (x:xs) = f x : lmap f xs

Example: Resource Management

When we close a file handle, we want to do it once and then not use the handle again.

x

xxcloseHandle :: Handle (IO ()

xxcloseHandle hdl = ...

Example: Protocols

Example in the paper.

Example: Safe Vector freeze

Let’s look at the example of reversing a vector.

x

xxreverse :: Vector a -> IO (Vector a)

• Why isn’t this pure?

Example: New Vector API

x

xxnewVector :: Int -> (MVector a (Vector b) (Vector b

x

xxwrite :: MVector a (Int (a -> MVector a

x

xxread :: MVector a (Int -> (MVector a, a)

x

xxfreeze :: MVector a (Vector b

Further Work

Let’s define a Functor with a linear arrow:

x

xxclass LFunctor a where

xxxxxxfmap :: (a (b) -> [a] ([b]

Does replacing the unrestricted arrow with a linear arrow make sense?

