A Brief Look at Linear Types in GHC 8.4

Erik de Castro Lopo

July 28, 2017



State of Play

e GHC 8.2.1 was released this past weekend.
e GHC devs aim to release GHC 8.4 Q1 2018.

¢ 8.4 will have a new feature, Linear Types.



Work by

e Arnaud Spiwack (Tweag 1/O).
e Jean-Philippe Bernary (U of Gothenburg).
e Edvard Hubinette (U of Gothenburg / GSoC / Tweag).



Current Status

e Working prototype at
https://github.com/tweag/linear—-types/releases (paper/tarball)
https://github.com/tweag/ghc (linear-types branch).

e According to diffstat:

122 files changed, 1242 insertions(+), 813 deletions(-)


https://github.com/tweag/linear-types/releases
https://github.com/tweag/ghc

Don’t be Alarmed!

e Existing programs continue to typecheck.
o Existing data types can be used as-is.

e Linear types are opt-in.



Fundamental Idea

e A value with a Linear Type must be used exactly once.

o Not zero times, not more than once.



Naive Approach

newtype Linear a = Linear a

e Still needs a compiler hack to bake in linearity.
e Doesn’t compose well.

e Would be painful to use.



A better approach

Linear Bxpes Function Arrows

TURE 2 3 a —ob

e —ois a sub class of the existing —>.
e Linearity-on-the-arrow supports linearity polymorphism.

e Functions can be written to work uniformly in both linear and non-linear code.



Unicode character U+22B8

—0



Operationally

The Linear arrow guarantees that if
f x
is consumed exactly once, then the argument
X

is consumed exactly once.



Consume exactly once:

e To consume a value of atomic base type (like Int or Ptr)

exactly once, just evaluate it.

e To consume a function exactly once, apply it to one argument,
and consume its result exactly once.

e To consume a pair exactly once, pattern-match on it,
and consume each component exactly once.

¢ In general, to consume a value of an algebraic data type exactly once,

pattern-match on it, and consume all its linear components exactly once.



Developing Intuitions

Standard Haskell defines a function that returns the first element of a pair:

st g3 (a, b) — a

fst (a, )

Il
L



Developing Intuitions

Standard Haskell defines a function that duplicates a value to returns a pair:

dup :: a —o (a, a)

dup a (a, a)



Linearity Polymorphism

List append example.



What does this buy us?

Avoid memory allocation by updating in place.

Resource management.

Enforcing invariants in protocols.

Safe replacement for unsafeFreeze.

Safe mutable arrays.



Example: Linear map function

The good old map function but with the linear arrow.



Example: Resource Management

When we close a file handle, we want to do it once and then not use the handle again.

closeHandle :: Handle —o IO ()

closeHandle hdl = ...



Example: Protocols

Example in the paper.



Example: Safe Vector freeze

Let’s look at the example of reversing a vector.

reverse :: Vector a —> IO (Vector a)

e Why isn’t this pure?



Example: New Vector API

newVector :: Int —> (MVector a —o Vector b) —o Vector b
write :: MVector a —o Int —o a —-> MVector a
read :: MVector a —o Int —-> (MVector a, a)

freeze :: MVector a —o Vector b



Further Work

Let’s define a Functor with a linear arrow:

class LFunctor a where

fmap :: (a — b) —-> [a] — [b]

Does replacing the unrestricted arrow with a linear arrow make sense?



