
DEPENDENT TYPES, NOT JUST
FOR VECTORS?

FP-SYD 2017

WHO AM I?

▸ Tim McGilchrist @lambda_foo

▸ Haskell programmer at Ambiata

▸ Curious about Distributed Systems

▸ Curious about Types

BACKGROUND
HOW DID I GET HERE?

ACTORS AND ERLANG

Mailbox

Process

SESSION TYPES

▸ Describe communication protocols

▸ Session types codify the structure of communication

▸ Data types codify the structures communicated

PROBLEMS

(X : TYPE) -> TYPE -> (X -> TYPE) -> TYPE

EFFECT SYSTEMS

▸ Available in Idris and Purescript

▸ Use effects to model state machines.

EFFECT PROBLEMS

▸ "it was not possible to implement one effectful API in
terms of others" E Brady

▸ "difficult to describe the relationship between separate
resources" E Brady

▸ Composing problems?

IDRIS IS A
PACMAN
COMPLETE
LANGUAGE
Edwin Brady

VECTOR LENGTH PROGRAMMING

λΠ>:doc Vect

Data type Data.Vect.Vect : (len : Nat) -> (elem : Type) -> Type

 Vectors: Generic lists with explicit length in the type

 Arguments:

 len : Nat -- the length of the list

 elem : Type -- the type of elements

Constructors:

 Nil : Vect 0 elem

 Empty vector

 (::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem

 A non-empty vector of length S len, consisting of a head element and the rest of

 the list, of length len.

PAPER

STATES ALL THE WAY DOWN

▸ "A useful pattern in dependently
typed programming is to define a
state transition system”

▸ “an architecture for dependently
typed applications”

▸ “How to implement a state
transition system as a dependent
type “

▸ "How to combine state transition
systems into a larger system"

GENERALISING STATEFUL PROGRAMS

▸ Types should capture the states of resources

▸ Stateful APIs should compose

▸ Types should be readable

▸ Error messages should be readable

ENTER STRANS

▸ m - underlying monad

▸ ty - result type of the program

▸ in_ctxt - input context

▸ out_ctxt

DATASTORE

USING DATASTORE

TEXT

(.) : (B -> C) -> (A -> B) -> A -> C

TYPES OF COMPOSITION

▸ Horizontally - multiple state machines within a function

▸ Vertically - implement state machine in terms of another

Examples:

Application on a Communication Protocol

Multiple resources, File IO plus State

STATE PLUS DATASTORE

TEXT

CLEANING UP THE TYPES

▸ Type level function ST

▸ List of actions on resources

DATASTORE - CLEAN

TEXT

PRETTY ERRORS

TEXT

CONCLUSION

▸ Need to tie this back to Actors.

▸ Encoding State Machines.

▸ Session Types

▸ Effect Systems

TEXT

RESOURCES

▸ States All the Way Down, Edwin Brady

▸ Programming and Reasoning with Algebraic Effects and
Dependent Types, Edwin Brady

▸ Session Types http://simonjf.com/2016/05/28/session-
type-implementations.html

▸ Idris website http://docs.idris-lang.org/

http://simonjf.com/2016/05/28/session-type-implementations.html
http://docs.idris-lang.org/

