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Dusty ..WHAT?.. but something with computers

dusty deck computer - Google Search - Google Chrome

&» dusty decksinpara. x ) G dusty deck compute x

< C | ® https://www.google.com.au/sea; a =10241 =7 a=18&ei=c)_4WP; +deck+E @ ¥
Go g |e dusty deck computer [y Q # 0
Al images  Videos  Shopping  News  More Setngs  Tools safe
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The 'Dusty deck’ problem in parallel computing

PROGRAMMING IVULTICORES:
DO APPLICATIONS PROGRAMMERS
NEED TO WRITE EXPLICITLY
PARALLEL PROGRAMS?
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RESEARCH DIRECTIONS, DAVID AUGUST AND KESHAV PINGAL! DEBATE WHETHER EXPLICITLY

PARALLEL PROGRAMMING IS A NECESSARY EVIL FOR APPLICATIONS PROGRAMMERS,

ASSESS THE CURRENT STATE OF PARALLEL PROGRAMMING MODELS, AND DISCUSS

POSSIBLE ROUTES TOWARD FINDING THE PROGRAMMING MODEL FOR THE MULTICORE ERA.

Moderator's introduction: Arvind

Do applications programmers need to write
explicidy parallel programs? Most people be-
ieve that the current method of paralle] pro-
gramming is impeding the exploitation of
multicores. In other words, the number of
cores in a microprocessor is likely to track
Moore's law in the near furure, but the pro-
gramming of multicores might remain the
biggest obstacle in the forward march of
perlormance.

Ler's assume that this premise is truc.
Now, the real question becomes: how should
applications programmers exploit the poten-
tial of multicores? There have been two main

in: IEEE Micro, vol.30 no.3, pp.19-33, May 2010

in the 19705 and 19805, when two main
approaches were developed

“The first approach required that the com-
pilers do all the work in finding the parallel.
ism. This was ofien referred to a5 the “dusty
decks” problem—shat s, how to exploit par-
allelism in existing programs. This approach
raught us a lot about compiling. But most
importandy, it taught us how to write a pro-
gram in the first place, so that the compiler
had a chance of finding the parallelism.

The second approach, to which T also
contributed, was to write programs in a man-
ner such tha the inherent (or obvious) paral-
Ielism in the algorithm is not obscured in the

nrnoram. | exnlared declarative lanensoes for
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'Dusty decks’ in this talk

Classic “dusty deck”
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'Dusty decks’ in this talk

Jost's dusty decks
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Overview

@ Prelude on dusty decks
© A few things on parallel programming
© Eden, a parallel Haskell for distributed memory
@ Skeletons for parallel programming: A Selection
@ Topology Skeletons — and a lesson about strictness
@ Hello-world of parallel FP: maps and beyond (task pools)

@ Algorithmic (higher-level) skeletons

© Some conclusions
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Overview

© A few things on parallel programming
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Why we care about parallel programming

Gordon Moore, 1965:

Over the history of computing
hardware, the number of
transistors on integrated
circuits doubles approximately

10,000 every two years.
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Parallel programming is cumbersome

@ Shared data needs to be protected (locks)

e protection can lead to deadlocks,
e omitting it can lead to race conditions.

@ Relaxed memory consistency of the hardware can falsify
reasonable assumptions of the programmer

e (Point-to-point) message passing is error-prone and relies on
complex assumptions about send/receive (a-)synchronicity.

Algorithm and essential complexity are often buried in gory details.

Parallel functional programming operates at a higher abstraction level:
Problem decomposition, task granularity, data dependencies
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Explicit and implicit parallel programming

Summary of the debate PROGRAMMING MULTICORES:

e Camps of implicit vs. explicit parallel D0 v PROGRAMIERS

programm in g PARALLEL PROGRAMS?

e regular and fine-grained vs. o
e amorphous, coarse-grained, and
input-dependent

@ programming happens at different levels

@ no final answer
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Explicit and implicit parallel programming

Summary Of the debate PROGRAMMING MULTICORES:
e Camps of implicit vs. explicit parallel D0 v PROGRAMIERS
programming PARALLEL PROGRANS?

e regular and fine-grained vs.
e amorphous, coarse-grained, and
input-dependent

@ programming happens at different levels

. programs ‘mpliﬁnly
@ no final answer Pa
.. . . . Explioity
Similar questions in the functional space: e+
@ How much abstraction and automation Figure 70 AR v encing
. . . . . the implicitly and explicitly parallel program-
is useful (for which application profile)? ing models, Agplicaions programmers
write SOL programs, which are implicitly
@ How much explicit control is required for e R
systems programmers have carefull
perform a nce? c\éd:d in parallel. 1 H
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Explicit and implicit...: A landscape

HEE Par Cloud
GpH new Monad Haskell
2010 Strategies
Edl
2000 data-par, GpH Concurrent
Haskell Strategies Haskell
Eden
GpH
1990 - -
explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)
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back-ends Edl + MFI
REPA
2000 Concurrent
data-par. GpH
Hask?::a” Strategies L Haskell
hMPI
Eden
GpH
1990 - -
pH explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)

Slide 11/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017




Explicit and implicit...: A landscape

EIT Par Cloud
Monad Haskell
2010 GPU o Haskell
back-ends Eg. EdI U
REPA
2000 Concurrent
data-par, GpH
Haskp::h Strategies L Haskell
hMPI
. Eden
1990 . GpH . B
pH explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)

Slide 11/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017




Overview

e Eden, a parallel Haskell for distributed memory
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Eden Examples in Pictures

Process Abstraction: process ::... (a -> b) -> Process a b
multproc = process (\x -> [ x*k | k <- [1,2..]1)

Process Instantiation: () ::... Process ab ->a -> b
multipleb = multproc # 5 5

[parent [—— mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
@ Stream communication for lists
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Eden Examples in Pictures

Process Abstraction: process ::... (a -> b) -> Process a b
multproc = process (\x -> [ x*k | k <- [1,2..]1)

Process Instantiation: () ::... Processab ->a -> b
multipleb = multproc # 5 5

[parent [—— mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
@ Stream communication for lists

Spawning many pProcesses: spawn ::... [Process a bl -> [a] —> [b]
multiples = spawn (replicate 10 multproc) [1..10]

par ent

0000000000

v L -

[1,2,3..] 10,20,30..]
2,4,6..] [9,18,27..]

’n’ultproc@‘ ’n’ultproc@ ©oocoo0o0o ’rmltproc@ ’mjltproc @‘
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Eden: Explicit Parallel Evaluation

@ Haskell extended by communicating processes for coordination
@ Developed in Marburg and Madrid since 1996

Eden constructs for Process abstraction and instantiation

process ::(Trans a, Trans b)=> (a -> b) -> Process a b

(# ) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [ Process a b ] -> [a] -> [b]
@ Distributed Memory (Processes do not share data)

Data sent through (hidden) 1:1 channels

Type class Trans: ~ © stream communication for lists
e concurrent evaluation of tuple components

e Full evaluation of process output (if any result demanded)

@ Non-functional features: explicit communication, n: 1 channels
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Eden implementation

@ Interface to Haskell: 10-monadic

primitive operations
ié)
@ Haskell module for functional API L 4
(process, instantiation)
instantiateAt :: Int -> Process a b -> a -> I0 b
instantiateAt p (Proc f_remote) procInput = do
(sendResult, r ) <- createComm -- result communicator
(inCC, Comm sendInput) <- createC -- reply: input communicator

sendData (Instantiate p) (f_remote sendResult inCC)
fork (sendInput procInput)
return r

{-# NOINLINE ( # ) #-}
p#x-= $ instantiateAt O p x
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Implementation layers

In line with the earlier question of required control:

Eden Program
uential Haskell
Eden Module Seq ta S

class Trans, Process, (#) Libraries
rimitives ))

Parallel RTE

Sequential RTE

@ Where should the line be drawn between pure and impure code?
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Implementation layers

In line with the earlier question of required control:

Parallel Program in Language X
Language X Module Sequential Haskell
General Framework Module Libraries
EDI Primitives

Parallel Runtime Env. (RTE Sequential RTE

Suitable Middleware

@ Where should the line be drawn between pure and impure code?

@ ...and libraries are not even in the picture
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Overview

@ Skeletons for parallel programming: A Selection
@ Topology Skeletons — and a lesson about strictness
@ Hello-world of parallel FP: maps and beyond (task pools)
@ Algorithmic (higher-level) skeletons
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S
The Idea of Skeleton-Basked Parallelism

How much code do you need to
implement a parallel quick sort?

Slide 18/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017




S
The ldea of Skeleton-Basked Parallelism

How much code do you need to
implement a parallel quick sort?

Divide and Conquer, as a higher-order function

divCongB :: (a -> Bool) -- trivial?
-> (a -> b) -- solve
-> (a -> [al) -- split
-> (a -> [b] -> b) -- combine
->a->b

divCongB trivial solve divide combine input = ...

@ Higher-order function defines algorithmic structure
@ Parameter functions define concrete algorithm

e Parallel structure (binary tree) can be exploited for parallelism
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Parallel Data Processing Using Parallel Skeletons

Iteration:

Map-Reduce:

coordinate

T nput

(stlate)
[deci deEn}

out put’

input data

e Parallel Skeletons [Cole 1989]: abstract specification of. ..
@ .. .algorithm structure as a higher-order function.
@ Abstract over concrete tasks (embedded “worker” functions),

@ hidden parallel optimised implementation(s) (machine-specific)

Enable a high-level view on parallel systems and computations

intermediate
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Parallel Data Processing Using Parallel Skeletons

input partitioned distributed
data M MEPPEr niermediate

Processes data (groups)
13N,

n Reducer distributed

Processes output data . .
Distributed
iteration input
% - N

Input
W Input |
( Output Control Body
. -—
1N *

1P
o e

b b b b

(worker) == (worker) ot ¥
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Topology Skeletons — and a lesson about strictness
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Process Topologies as Skeletons: Explicit Parallelism

o Parallel interaction of a process structure described as a
pattern/higher-order function

@ Node behaviour defined as function argument,
skeleton structures parallel interaction;

Examples:
Pipeline/Ring: Master /- Hypercube:
Worker:
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Process Topologies as Skeletons: Explicit Parallelism

o Parallel interaction of a process structure described as a
pattern/higher-order function

@ Node behaviour defined as function argument,
skeleton structures parallel interaction;

Examples:
Pipeline/Ring: Master /- Hypercube:
Worker:

= well-suited for functional languages with explicit parallelism.

@ Explicit notion of parallelism and communication;
@ capitalises on structured methodology and portability.
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [ [a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [ [a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:

pipeTR [1 xs = xs
pipeTR (f:fs) xs

pipeTR fs ( process f # xs)
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [ [a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:

pipeTR [1 xs

*s [ parent process |

pipeTR (f:fs) xs - ..
pipeTR fs ( process f # xs) i(\‘zf\‘z(\‘—le
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [ [a] -> [a] 1 -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:

pipeR [] vals = vals
pipeR ps vals = (process (generatePipe ps)) # vals
generatePipe [p] vals = p vals

generatePipe (p:ps) vals =
(process (generatePipe ps)) # (p vals)
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [ [a] -> [a] 1 -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:

vals
(process (generatePipe ps)) # valsl

pipeR [] vals
pipeR ps vals

parent process |

generatePipe [p] vals = p vals input 3 K output
generatePipe (p:ps) vals = M
(process (generatePipe ps)) # (p vals) ﬂ-ﬂ-ﬂ*ﬂ
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Pipeline (cont.d)

Recursion with dynamic reply channel:

ediRecPipe fs input
= do (inCC,inC) <- createC
(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))
fork (sendNFStream inC input)
return res
doPipe incc resC (f:fs)
= do (inC,input) <- createC
if null fs then sendNF incc inC
else sendData (Instantiate 0)
(doPipe incc inC fs)

sendNFStream resC (f input)
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Pipeline (cont.d)

Recursion with dynamic reply channel:

ediRecPipe fs input
= do (inCC,inC) <- createC
(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))

fork (sendNFStream inC input)
return res
doPipe incc resC (f:fs) | parent process |
= do (inC,input) <- createC input output
if null fs then sendNF incc inC ﬂ m m m
else sendData (Instantiate 0)

(doPipe incc inC fs)
sendNFStream resC (f input)

@ Need to use explicit communication channels!
@ Here written in EDI (I0-monadic Eden Implementation features)

e Can use Remote Data concept instead (not described here).
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Process Topologies as Skeletons: Ring

i L RingSkel N, o]
b b b b

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[r]) > (b,[r])) -> i -> o

ring size makeInput processOutput ringWorker input = ...

e Circulating global data between worker nodes (stream of type (1)
@ All ring processes connect to parent to receive input/send output
@ Parameters: functions for

e decomposing input, combining output, ring worker
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S
Ring Example: All Pairs Shortest Paths (Floyd-Warshall)

Adjacency Matrix Distance Matrix
0 w12 W13 ... Wi, 0 dip diz ... dig
w2 1 0 w2 3 000 w2 n d2,1 0 d2,3 a0 d2,n
W31 w32 0 .. W3 . d3,1 d372 0 000 d37n
Wni Wp2 Wp3 ... 0 dp1 dp2 dpz o ... 0

@ For each row of distances from node k:
e For all other distance rows /7, in ascending order:
- check if row i indicates a path from k to another node
- if yes, update the distance row k to use the shorter path
@ When row k has been updated with all i < k

e use this updated distance row to update all rows j > k.
i

@ Order of updates matters, but all rows
can be updated for each i simultaneously.
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Ring Example: All Pairs Shortest Paths (Floyd-Warshall)

Adjacency Matrix Distance Matrix

0 wi 2 w13 ... Wip 0 d172 d1,3 500 dl,,,
w21 0 w23 ... Wan d1 0 d3z ... do,
w31 w32 0 oo W3 - d371 d3,2 0 000 d3y,,
Whn,1 Whp,2 Whn,3 ae 0 dn,l dn,2 dn,3 ae 0

Floyd-Warshall: Update all rows k in parallel

ring_iterate :: Int -> Int -> Int —> -> [[Int]] -> ( ,[[Int]])
ring_iterate size k i rowk rows
| 1 > size = (rowk, [1) -- finished
| i == = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows
(result, rest) = ..777.. ring_iterate size k (i+1) nextrowk xs
nextrowk | i == = rowk

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)
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S
Trace of Warshall Program

First version:

| I T R

With additional early demand

e (result, rest) = rnf nextrowk ‘seq‘
ring_iterate size k (i+1) nextrowk xs
e 0TI RO nextrowk | i == = rowk
ey RGO A | otherwise = updaterow rowk rowi distki
o B5 90 5 55 50 55 40
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Hello-world of parallel FP: maps and beyond (task pools)
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Small-Scale Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent, elementwise, embarrassingly parallel
... probably the most common example of parallelism in FP
e Parallel Reduction: Fold
fold :: (a > a ->a) ->a -> [a] > a
with commutative and associative operation.
e Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.

@ Parallel Map-Reduce:
combining transformation and reduction.
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...distributing in chunks..

| —— |
=
.|
.|

LD

ST T

.| 1 1100 O OO

Very uneven load balance when using chunks (stripes)

Slide 32/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017




Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...distributing round-robin..

LRI TR | O
I T TN ) DTNV |
%o b2 ®a be T3 5o Y ¥ 5e Ss Do 52

Better: round-robin distribution, but still not well-balanced.
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S
Dynamic Load-Balancing: Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a]l > [b]
mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch
@ Master sends a new task each time a result is returned

@ Initial task prefetcn for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance
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Workpool skeleton (simple version)

Simple Workpool Skeleton

mw np prefetch f tasks = map snd fromWorkers

where fromWorkers :: [(Int,r)]
fromWorkers = merge (tagWithIds (parMapEden (map f) taskss))
taskss = (initialReqs ++ newRegs) tasks

initialReqs = concat (replicate prefetch [1..np])
newRequests = map fst fromWorkers
[Int]l -> [t] -> [[t]1]
reqs tasks = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe
taskList _ = [1

tagWithIds rss = [ zip (;epeat ;) rs |(i,rs) <-zip [1..] rss]

e Non-deterministic (unsorted results), implemented using merge
@ Returned results tagged, driving task distribution

@ Many variants available in the Eden skeleton library.

http://hackage.haskell.org/package/edenskel/
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Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]l) -> [a] -> [b]

Skeleton and worker function now have the same type!
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Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]l) -> [a] -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)
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S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

mwNested nps pfs wf = foldr fld wf (zip nps pfs)
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S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong?
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S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong? ......
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S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a] -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong? ...... wf = drop prefetch T
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S
Dynamically Growing Task Pools

° More Interesting: worker :: task -> (Maybe result, [task])

@ New tasks enqueued in dynamically growing task pool.

@ Backtracking: Explore decision alternatives until desired result.
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S
Dynamically Growing Task Pools

More Interesting: worker :: task -> (Maybe result, [task])

New tasks enqueued in dynamically growing task pool.

Backtracking: Explore decision alternatives until desired result.

[t]

State: Counter for total no. of tasks

Task counter function:

e consumes output of all workers L
e adds new tasks to task list
o closes task list when counter ==
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S
Dynamically Growing Task Pools

o More Interesting: worker :: task -> (Maybe result, [task])

@ New tasks enqueued in dynamically growing task pool.

@ Backtracking: Explore decision alternatives until desired result.

[t]
@ State: Counter for total no. of tasks

@ Task counter function:

e consumes output of all workers L
e adds new tasks to task list
o closes task list when counter ==

@ This is a computation scheme, rather than being data-oriented.
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Algorithmic (higher-level) skeletons
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More algorithm-oriented Skeletons

Backtracking (Tree search)

backtrack :: (a -> (Maybe b, [a]) -- maybe solve problem, refine problem
-> a -> [b] -- start problem / solutions

Divide and conquer

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a => [al) -> (a -> [b] -> b) -- split / combine
->a->b -- input / result
Iteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init
(t -> State ws r) —> -- worker

([r] -> state ms (Either out [t])) -- manager
-> inp -> out

—_ dinate oot
Tnput | (stjate) | |OutPuU

deci deEn,
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Divide & Conquer (simple general version)

divCon :: Int -> (a -> Bool) -> (a -> b) -- depth / trivial? / solve
-> (a => [al) -> (a -> [b] -> b) -- split / combine
->a->b -- input / result

divCon depth trivial solve split combine x
= if depth < 1 then seqDC x
else if trivial x then solve x
else childRs ‘seq‘ -- early demand on children results
combine x (myR : childRs)
where myself = divCon (depth - 1) trivial solve split combine
seqDC x = if trivial x then solve x
else combine x (map seqDC (split x))
(mine:rest) = split x
myR = myself mine
childRs = parMapEden myself rest

Room for optimisation:
@ Number of sub-problems often fixed by the algorithm

@ Processes should be placed evenly on all machines

The Eden skeleton library contains many variants.
http://hackage.haskell.org/package/edenskel/
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Parallel iteration (an algorithmic skeleton)

Iterated parallel map on tasks

—_ ~ dinate oot
input | (stlate) [ |OUtPU
iterateUntil :: :
. ) . deci deEn
(inp -> Int -> ([ws],[t],ms)) —> -- split/init 7\
(t -> State ws r) —> -- worker

([r] -> State
-> inp -> out

Worker:

Manager:

Applications:

ms (Either out [t])) -- manager

compute result r from task ¢
using and updating a local state ws

decide whether to continue,
based on master state ms and worker results [r].

produce tasks [t] for all workers

N-body, K-means clustering, genetic algorithms. . .
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S
Iteration Skeletons — Control and Body

Meta-skeleton for iteration:

Distributed

newtype Iter a = ... -- dedicated stream type iteration J.nput
iter :: (inp -> Iter r -> (Iter t,out)) --control g
-> (Iter t -> Iter r) --body “x‘
-> inp -> out --in/out Input
—
Output Control Body
-«
. . K W
@ Type family 1ter characterises streams N T
over parallel data structures T
Dlstrlbuted

iteration output

@ Both body and control can be parallel
skeletons (small type-directed adaptation
of existing skeletons)

@ Communication inside both body and
control part possible

@ Convenience API to express common
variants of body and control
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Overview

© Some conclusions
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Some Conclusions

@ Parallel + Functional = High-Level Parallel Programming
e Different skeleton categories (increasing abstraction)

Process topologies, small-scale skeletons, computation &
algorithmic skeletons.

@ Skeletons enable programmers to think parallel

e Clear view on functionality and parallel structure
e High-level specification can expose structural properties

Skeleton Challenges:

e Balance between complexity and flexibility
o Identify useful parameters, heuristics and cost estimates

e Make skeletons (more) compositional
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...and there is more!

@ http://www.mathematik.uni-marburg.de/~eden/

@ http://hackage.haskell.org/package/edenskel/

@ http://hackage.haskell.org/package/edenmodules/
@ http://github.com/jberthold/ghc
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