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Dusty ..WHAT?..
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Dusty ..WHAT?.. but something with computers
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The ’Dusty deck’ problem in parallel computing

in: IEEE Micro, vol.30 no.3, pp.19-33, May 2010
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’Dusty decks’ in this talk

Classic “dusty deck”
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Overview

1 Prelude on dusty decks

2 A few things on parallel programming

3 Eden, a parallel Haskell for distributed memory

4 Skeletons for parallel programming: A Selection
Topology Skeletons – and a lesson about strictness
Hello-world of parallel FP: maps and beyond (task pools)
Algorithmic (higher-level) skeletons

5 Some conclusions
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Why we care about parallel programming

[?]

Gordon Moore, 1965:
Over the history of computing
hardware, the number of
transistors on integrated
circuits doubles approximately
every two years.

← Not so for clock speeds!

← (nor power consumption)
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Parallel programming is cumbersome

Shared data needs to be protected (locks)
protection can lead to deadlocks,
omitting it can lead to race conditions.

Relaxed memory consistency of the hardware can falsify
reasonable assumptions of the programmer
(Point-to-point) message passing is error-prone and relies on
complex assumptions about send/receive (a-)synchronicity.

Algorithm and essential complexity are often buried in gory details.

Parallel functional programming operates at a higher abstraction level:
Problem decomposition, task granularity, data dependencies
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Explicit and implicit parallel programming
Summary of the debate

Camps of implicit vs. explicit parallel
programming

regular and fine-grained vs.
amorphous, coarse-grained, and
input-dependent

programming happens at different levels
no final answer

Similar questions in the functional space:

How much abstraction and automation
is useful (for which application profile)?
How much explicit control is required for
performance?
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Explicit and implicit. . . : A landscape

Classification of parallel programming paradigms (inspired by D.Skillikorn)
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3 Eden, a parallel Haskell for distributed memory
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Eden Examples in Pictures

Process Abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [ x*k | k <- [1,2..]])

Process Instantiation: (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ... ]

Full evaluation of argument (concurrent) and result (parallel)
Stream communication for lists

Spawning many processes: spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]

parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10
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Eden: Explicit Parallel Evaluation

Haskell extended by communicating processes for coordination
Developed in Marburg and Madrid since 1996

Eden constructs for Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
( # ) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [ Process a b ] -> [a] -> [b]

Distributed Memory (Processes do not share data)
Data sent through (hidden) 1:1 channels
Type class Trans: stream communication for lists

concurrent evaluation of tuple components
Full evaluation of process output (if any result demanded)
Non-functional features: explicit communication, n : 1 channels
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Eden implementation

Explicit message passing between
independent runtime system instances
Interface to Haskell: IO-monadic
primitive operations
Haskell module for functional API
(process, instantiation)

HeapHeap
C

C

1

2

Instantiate

createC

Data
3

connect

instantiateAt :: Int -> Process a b -> a -> IO b
instantiateAt p (Proc f_remote) procInput = do

(sendResult, r ) <- createComm -- result communicator
(inCC, Comm sendInput) <- createC -- reply: input communicator
sendData (Instantiate p) (f_remote sendResult inCC)
fork (sendInput procInput)
return r

{-# NOINLINE ( # ) #-}
p # x = unsafePerformIO $ instantiateAt 0 p x
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Implementation layers

In line with the earlier question of required control:

Where should the line be drawn between pure and impure code?

. . . and libraries are not even in the picture
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The Idea of Skeleton-Basked Parallelism

How much code do you need to
implement a parallel quick sort?

Divide and Conquer, as a higher-order function
divConqB :: (a -> Bool) -- trivial?

-> (a -> b) -- solve
-> (a -> [a]) -- split
-> (a -> [b] -> b) -- combine
-> a -> b

divConqB trivial solve divide combine input = ...

Higher-order function defines algorithmic structure
Parameter functions define concrete algorithm
Parallel structure (binary tree) can be exploited for parallelism
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Parallel Data Processing Using Parallel Skeletons

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

Map-Reduce:

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

Parallel Skeletons [Cole 1989]: abstract specification of. . .
. . . algorithm structure as a higher-order function.
Abstract over concrete tasks (embedded “worker” functions),
hidden parallel optimised implementation(s) (machine-specific)

Enable a high-level view on parallel systems and computations
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Parallel Data Processing Using Parallel Skeletons

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

k1
k2

kj

kn

mapF
 2

k1
k2

kj

kn

mapF
m-2

k1
k2

kj

kn

mapF
m-1

k1
k2

kj

kn

mapF
 m

k1
k2

kj

kn

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

...
...

...
...

...

distributed
intermediate
data (groups)

Control Body

Input

Output

Distributed
iteration input

Distributed
iteration output

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

RingSkel

...

i o

r

a b a b a b a b
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Topology Skeletons – and a lesson about strictness
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Process Topologies as Skeletons: Explicit Parallelism

Parallel interaction of a process structure described as a
pattern/higher-order function
Node behaviour defined as function argument,
skeleton structures parallel interaction;

Examples:
Pipeline/Ring: Master/-

Worker:

...

Hypercube:

⇒ well-suited for functional languages with explicit parallelism.

Explicit notion of parallelism and communication;
capitalises on structured methodology and portability.
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types

type Pipe a = [ [a] -> [a] ] -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:
pipeTR [] xs = xs
pipeTR (f:fs) xs =

pipeTR fs ( process f # xs)

parent process

P P P P
input output? 6��� ��� ���AAU AAU AAU
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Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types

type Pipe a = [ [a] -> [a] ] -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:

pipeR [] vals = vals
pipeR ps vals = (process (generatePipe ps)) # vals
generatePipe [p] vals = p vals
generatePipe (p:ps) vals =

(process (generatePipe ps)) # (p vals)

P P P P

parent process
input output?6

- - -
� � �
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Pipeline (cont.d)

Recursion with dynamic reply channel:

ediRecPipe fs input
= do (inCC,inC) <- createC

(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))
fork (sendNFStream inC input)
return res

doPipe incc resC (f:fs)
= do (inC,input) <- createC

if null fs then sendNF incc inC
else sendData (Instantiate 0)

(doPipe incc inC fs)
sendNFStream resC (f input)

parent process

P P P P
input output
?

ss - - -s s s6s

Need to use explicit communication channels!
Here written in EdI (IO-monadic Eden Implementation features)
Can use Remote Data concept instead (not described here).
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Process Topologies as Skeletons: Ring

RingSkel

...

i o

r

a b a b a b a b

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) ->
((a,[r]) -> (b,[r])) -> i -> o

ring size makeInput processOutput ringWorker input = ...

Circulating global data between worker nodes (stream of type [r])
All ring processes connect to parent to receive input/send output
Parameters: functions for

decomposing input, combining output, ring worker
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Ring Example: All Pairs Shortest Paths (Floyd-Warshall)
Adjacency Matrix Distance Matrix

0 w1,2 w1,3 . . . w1,n
w2,1 0 w2,3 . . . w2,n
w3,1 w3,2 0 . . . w3,n
...

...
...

...
...

wn,1 wn,2 wn,3 . . . 0

⇒


0 d1,2 d1,3 . . . d1,n
d2,1 0 d2,3 . . . d2,n
d3,1 d3,2 0 . . . d3,n
...

...
...

...
...

dn,1 dn,2 dn,3 . . . 0


For each row of distances from node k:

For all other distance rows i , in ascending order:
- check if row i indicates a path from k to another node
- if yes, update the distance row k to use the shorter path

When row k has been updated with all i < k
use this updated distance row to update all rows j > k.

Order of updates matters, but all rows
can be updated for each i simultaneously.

RingSkel

...

i o

r

a b a b a b a b
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...

...
...

dn,1 dn,2 dn,3 . . . 0


Floyd-Warshall: Update all rows k in parallel
ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int],[[Int]])
ring_iterate size k i rowk rows

| i > size = (rowk, []) -- finished
| i == k = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows

(result, rest) = ..???.. ring_iterate size k (i+1) nextrowk xs
nextrowk | i == k = rowk

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

RingSkel

...

i o

r

a b a b a b a b
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Trace of Warshall Program

First version:

With additional early demand
...

(result, rest) = rnf nextrowk ‘seq‘
ring_iterate size k (i+1) nextrowk xs

nextrowk | i == k = rowk
| otherwise = updaterow rowk rowi distki

...
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Hello-world of parallel FP: maps and beyond (task pools)
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Small-Scale Skeletons: Higher-Order Functions

Parallel transformation: Map

map :: (a -> b) -> [a] -> [b]

independent, elementwise, embarrassingly parallel
. . . probably the most common example of parallelism in FP
Parallel Reduction: Fold

fold :: (a -> a -> a) -> a -> [a] -> a

with commutative and associative operation.
Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.
Parallel Map-Reduce:

combining transformation and reduction.
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...

distributing
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...distributing in chunks..

Very uneven load balance when using chunks (stripes)
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Parallel map Example: Mandelbrot

Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...distributing round-robin..

Better: round-robin distribution, but still not well-balanced.
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Dynamic Load-Balancing: Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool

mw :: Int -> Int ->
( a -> b ) -> [a] -> [b]

mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Master sends a new task each time a result is returned
Initial task prefetch for each worker:
Higher prefetch ⇒ more and more static task distribution
Lower prefetch ⇒ dynamic load balance

Slide 33/44 — J.Berthold (CBA) — Dusty Decks of Parallel HS — FP Syd, 04/2017



Workpool skeleton (simple version)

Simple Workpool Skeleton
mw np prefetch f tasks = map snd fromWorkers

where fromWorkers :: [(Int,r)]
fromWorkers = merge (tagWithIds (parMapEden (map f) taskss))
taskss = distribute (initialReqs ++ newReqs) tasks
initialReqs = concat (replicate prefetch [1..np])
newRequests = map fst fromWorkers
distribute :: [Int] -> [t] -> [[t]]
distribute reqs tasks = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []
tagWithIds rss = [ zip (repeat i) rs |(i,rs) <-zip [1..] rss]

Non-deterministic (unsorted results), implemented using merge

Returned results tagged, driving task distribution
Many variants available in the Eden skeleton library.

http://hackage.haskell.org/package/edenskel/

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]
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Nesting the Master-Worker Skeleton
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Nesting: . . .We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a] -> [b]

Skeleton and worker function now have the same type!

2-Level Nesting:

mw2 np1 pf1 np2 pf2 wf = mw’ np1 pf1 (mw’ np2 pf2 wf)

General nesting by folding:

fld :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r])
fld (np,pf) wf = mw’ np pf wf

Branch degrees nps and prefetch values pfs per level

mwNested nps pfs wf = foldr fld wf (zip nps pfs)

What can possibly go wrong? . . . . . . wf = drop prefetch †
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Dynamically Growing Task Pools

More interesting: worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Explore decision alternatives until desired result.

State: Counter for total no. of tasks
Task counter function:

consumes output of all workers
adds new tasks to task list
closes task list when counter == 0

worker worker worker...

(r,[t])

master

[t]
[r][t] [r]

distribute

init

task count
function

This is a computation scheme, rather than being data-oriented.
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Algorithmic (higher-level) skeletons
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More algorithm-oriented Skeletons

Backtracking (Tree search)
backtrack :: (a -> (Maybe b, [a]) -- maybe solve problem, refine problem

-> a -> [b] -- start problem / solutions

Divide and conquer
divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve

-> (a -> [a]) -> (a -> [b] -> b) -- split / combine
-> a -> b -- input / result

Iteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init

(t -> State ws r) -> -- worker
([r] -> State ms (Either out [t])) -- manager
-> inp -> out

input output
coordinate

W W WW

decideEnd

(state)
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Divide & Conquer (simple general version)

divCon :: Int -> (a -> Bool) -> (a -> b) -- depth / trivial? / solve
-> (a -> [a]) -> (a -> [b] -> b) -- split / combine
-> a -> b -- input / result

divCon depth trivial solve split combine x
= if depth < 1 then seqDC x

else if trivial x then solve x
else childRs ‘seq‘ -- early demand on children results

combine x (myR : childRs)
where myself = divCon (depth - 1) trivial solve split combine

seqDC x = if trivial x then solve x
else combine x (map seqDC (split x))

(mine:rest) = split x
myR = myself mine
childRs = parMapEden myself rest

Room for optimisation:
Number of sub-problems often fixed by the algorithm
Processes should be placed evenly on all machines

The Eden skeleton library contains many variants.
http://hackage.haskell.org/package/edenskel/
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Parallel iteration (an algorithmic skeleton)

Iterated parallel map on tasks

iterateUntil ::
(inp -> Int -> ([ws],[t],ms)) -> -- split/init
(t -> State ws r) -> -- worker
([r] -> State ms (Either out [t])) -- manager
-> inp -> out

input output
coordinate

W W WW

decideEnd

(state)

Worker: compute result r from task t

using and updating a local state ws

Manager: decide whether to continue,
based on master state ms and worker results [r].
produce tasks [t] for all workers

Applications: N-body, K-means clustering, genetic algorithms. . .
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Iteration Skeletons – Control and Body
Meta-skeleton for iteration:
newtype Iter a = ... -- dedicated stream type
iter :: (inp -> Iter r -> (Iter t,out)) --control

-> (Iter t -> Iter r) --body
-> inp -> out --in/out

Type family Iter characterises streams
over parallel data structures
Both body and control can be parallel
skeletons (small type-directed adaptation
of existing skeletons)
Communication inside both body and
control part possible
Convenience API to express common
variants of body and control

Control Body

Input

Output

Distributed
iteration input

Distributed
iteration output

a
d

Iter b

Iter c

communication
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Overview

1 Prelude on dusty decks

2 A few things on parallel programming

3 Eden, a parallel Haskell for distributed memory

4 Skeletons for parallel programming: A Selection
Topology Skeletons – and a lesson about strictness
Hello-world of parallel FP: maps and beyond (task pools)
Algorithmic (higher-level) skeletons

5 Some conclusions
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Some Conclusions

Parallel + Functional = High-Level Parallel Programming
Different skeleton categories (increasing abstraction)

Process topologies, small-scale skeletons, computation &
algorithmic skeletons.

Skeletons enable programmers to think parallel
Clear view on functionality and parallel structure
High-level specification can expose structural properties

Skeleton Challenges:

Balance between complexity and flexibility
Identify useful parameters, heuristics and cost estimates
Make skeletons (more) compositional
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. . . and there is more!

http://www.mathematik.uni-marburg.de/~eden/

http://hackage.haskell.org/package/edenskel/

http://hackage.haskell.org/package/edenmodules/

http://github.com/jberthold/ghc
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