Dusty Decks of parallel Haskell

: — for the lack of a catchier title—

Jost Berthold* #
jberthold@acm.org

Commonwealth Bank
(but for this topic it is probably more accurate to say
Philipps University of Marburg, Germany)

FP Syd, April 2017

L
Dusty .. WHAT?..

dusty deck problem - Google Search - Google Chrome

& dusty decksinpara x)/ G dusty deck problem x

024&bih=768&tbm=isch

<« (] ‘ @ Secure | https://www.google.com.au/s. roid-samsung&bi B8gX--rKQAQ&q=dust @ ¢

Go gle dusty deck problem [y Q

Al Images Shopping Videos News More Settings Tools Safe

Where do you buy
quality deck materials?
Enter your zip code...

Slide 2/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Dusty ..WHAT?.. but something with computers

dusty deck computer - Google Search - Google Chrome

&» dusty decksinpara. x) G dusty deck compute x

< C | ® https://www.google.com.au/sea; a =10241 =7 a=18&ei=c)_4WP; +deck+E @ ¥
Go g |e dusty deck computer [y Q # 0
Al images Videos Shopping News More Setngs Tools safe

Slide 3/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

The 'Dusty deck’ problem in parallel computing

PROGRAMMING IVULTICORES:
DO APPLICATIONS PROGRAMMERS
NEED TO WRITE EXPLICITLY
PARALLEL PROGRAMS?

IN THIS PANEL DISCUSSION FROM THE 2009 VWORKSHOP ON COMPUTER ARCHITECTURE

Anind
Massachusetts Institute
of Technology
David August
Princeton University
Keshav Pingali
Derek Chiou
University of Texas
al Austin

Resit Sendag
University of Ahode
Island

Inchua 1 Vi

RESEARCH DIRECTIONS, DAVID AUGUST AND KESHAV PINGAL! DEBATE WHETHER EXPLICITLY

PARALLEL PROGRAMMING IS A NECESSARY EVIL FOR APPLICATIONS PROGRAMMERS,

ASSESS THE CURRENT STATE OF PARALLEL PROGRAMMING MODELS, AND DISCUSS

POSSIBLE ROUTES TOWARD FINDING THE PROGRAMMING MODEL FOR THE MULTICORE ERA.

Moderator's introduction: Arvind

Do applications programmers need to write
explicidy parallel programs? Most people be-
ieve that the current method of paralle] pro-
gramming is impeding the exploitation of
multicores. In other words, the number of
cores in a microprocessor is likely to track
Moore's law in the near furure, but the pro-
gramming of multicores might remain the
biggest obstacle in the forward march of
perlormance.

Ler's assume that this premise is truc.
Now, the real question becomes: how should
applications programmers exploit the poten-
tial of multicores? There have been two main

in: IEEE Micro, vol.30 no.3, pp.19-33, May 2010

in the 19705 and 19805, when two main
approaches were developed

“The first approach required that the com-
pilers do all the work in finding the parallel.
ism. This was ofien referred to a5 the “dusty
decks” problem—shat s, how to exploit par-
allelism in existing programs. This approach
raught us a lot about compiling. But most
importandy, it taught us how to write a pro-
gram in the first place, so that the compiler
had a chance of finding the parallelism.

The second approach, to which T also
contributed, was to write programs in a man-
ner such tha the inherent (or obvious) paral-
Ielism in the algorithm is not obscured in the

nrnoram. | exnlared declarative lanensoes for

Slide 4/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

The 'Dusty deck’ problem in parallel computing

PROGRAMMING IVULTICORES:
DO APPLICATIONS PROGRAMMERS
NEED TO WRITE EXPLICITLY
PARALLEL PROGRAMS?

Anind
Institute

IN THIS PANEL DISCUSSION FROM THE 2009 VWORKSHOP ON COMPUTER ARCHITECTURE

RESEARCH DIRECTIONS, DAVID AUGUST AND KESHAV PINGAL! DEBATE WHETHER EXPLICITLY

PARALLEL PROGRAMMING IS A NECESSARY EVIL FOR APPLICATIONS PROGRAMMERS,

ASSESS THE CURRENT STATE OF PARALLEL PROGRAMMING MODELS, AND DISCUSS

POSSIBLE ROUTES TOWARD FINDING THE PROGRAMMING MODEL FOR THE MULTICORE ERA.

Moderator's introduction: Arvind

Do applications programmers need to write
explicitly paralle] programs? Maost people be-
Ticve that the current method of paralle] pro-
gramming is impeding the exploitation of
multicores. In other words, the number of
cores in a microprocessor is likely to track
Moore's law in the near furure, but the pro-
gramming of multicores might remain the
biggest obstacle in the forward march of
perlormance.

Ler's assume that this premise is truc.
Now, the real question becomes: how should
applications programmers exploit the poten-
tial of multicores? There have been two main

in: IEEE Micro, vol.30 no.3, pp.19-33, May 2010

in the 19705 and 19805, when two main
approaches were developed

“The first approach required that the com-
pilers do all the work in finding the parallel.
ism. Thi 1035 the “dusty
decks” hat s, how to exploit par-
allelism in existing programs. This approach
raught us a lot about compiling. But most
importandy, it taught us how to write a pro-
gram in the first place, so that the compiler
had a chance of finding the parallelism.

The second approach, to which T also
contributed, was to write programs in a man-
ner such tha the inherent (or obvious) paral-
Ielism in the algorithm is not obscured in the

Tenlared declaraive lanonaces far

rallel HS — FP Syd, 04/2017

'Dusty decks’ in this talk

Classic “dusty deck”

Slide 5/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

'Dusty decks’ in this talk

Jost's dusty decks

many-old-slide-decks

Classic

“dusty deck” |

many-old-slide-decks

2 A k] & 2
DIKU2013Research. DustyDecks- onsC onsC onsC
pdf FPSyd20170426.pdf halmers20120329. halmers20130415. halmers20140407.
pdf pdf pdf

Eden- Glasgow.pdf HFCaseStudiesHW HFcasestudyGeneti ~ HIw2013SerialAPI.
Poster201411xx. U.pdf pdf
pdf
— — = — —
a k] 2 £ €
HIW2013- HSImp|2011Eden. HSIWOSRTS.pdf SDCworkshopBeijin Skelpdf
serialisation.pdf pdf

201204J8.pdf

.

> x
slidesDisputatio- slidesDlsemLMUOS.
FRLpdF pdf

E—)
slidesEdiTalkog.pdf slidesIFLOG.pdf

5
slidesIFL10Serial.
pdf

JE—
@ -] = | 2

Slides-serialisation. ~ slidesTFPO7TWP.pdf slidesTFP11.pdF Vienna201412- Vienna201412-
pdf parfp.pdF

parfy+.pdF
"Vienna201412-parfp+.pdF" selected (3.5 MB), Free space: 1.3 GB

Slide 5/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Overview

@ Prelude on dusty decks
© A few things on parallel programming
© Eden, a parallel Haskell for distributed memory
@ Skeletons for parallel programming: A Selection
@ Topology Skeletons — and a lesson about strictness
@ Hello-world of parallel FP: maps and beyond (task pools)

@ Algorithmic (higher-level) skeletons

© Some conclusions

Slide 6/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Overview

© A few things on parallel programming

Slide 7/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Why we care about parallel programming

Gordon Moore, 1965:

Over the history of computing
hardware, the number of
transistors on integrated
circuits doubles approximately

10,000 every two years.
L)

1,000

10,000,000

1,000,000

Intel/CPU

rces: Intel, Wiki

100,000

>
100
W
./. e oo
.
1 /4

o
1970 1975 1980 1985 1990 1995 2000

G|
Slide 8/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Why we care about parallel programming

10,000,000

Gordon Moore, 1965:
o . /’ Over the history of computing

Intel CPU Trend hardware, the number of

05000 7Intel, Wikiperlia, K- O transistors on integrated
| Pentium 4 2l circuits doubles approximately
10000 every two years.
L)
000 . + Not so for clock speeds!
> -
100 =)
- 3 < (nor power consumption)
i / L))
x
./.. e oo /r
T 7" edespecs iy |
. L] ... A Power (W)

° I

‘@ Perf/Clock (LP)
I

1970 1975 1980 1985 1990 1995 2000 2005 2010

[
Slide 8/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Why we care about parallel programming

10,000,000

— Gordon Moore, 1965:
. T /’ Over the history of computing
o Intel CPU Trend hardware, the number of

: Intel

10000 , Wikipedia, K. O transistors on integrated
| Pentium 4 2l circuits doubles approximately
10000 i every two years.
o0 ke < Not so for clock speeds!
E> - -
100
. ” < (nor power consumption)
i ‘/ L))
JI e oo

| J
‘.
;
\
A

\

Z °® @ Clock Speed (WHz)
° o °
PP aPower (W)
@ Pert/Clock (ILP)
0 \ \ \

1970 1975 1980 1985 1990 1995 2000 2005 2010

[?
Slide 8/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel programming is cumbersome

@ Shared data needs to be protected (locks)

e protection can lead to deadlocks,
e omitting it can lead to race conditions.

@ Relaxed memory consistency of the hardware can falsify
reasonable assumptions of the programmer

e (Point-to-point) message passing is error-prone and relies on
complex assumptions about send/receive (a-)synchronicity.

Algorithm and essential complexity are often buried in gory details.

Parallel functional programming operates at a higher abstraction level:
Problem decomposition, task granularity, data dependencies

Slide 9/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Explicit and implicit parallel programming

Summary of the debate PROGRAMMING MULTICORES:

e Camps of implicit vs. explicit parallel D0 v PROGRAMIERS

programm in g PARALLEL PROGRAMS?

e regular and fine-grained vs. o
e amorphous, coarse-grained, and
input-dependent

@ programming happens at different levels

@ no final answer

Slide 10/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Explicit and implicit parallel programming

Summary Of the debate PROGRAMMING MULTICORES:
e Camps of implicit vs. explicit parallel D0 v PROGRAMIERS
programming PARALLEL PROGRANS?

e regular and fine-grained vs.
e amorphous, coarse-grained, and
input-dependent

@ programming happens at different levels

. programs ‘mpliﬁnly
@ no final answer Pa
.. . . . Explioity
Similar questions in the functional space: e+
@ How much abstraction and automation Figure 70 AR v encing
. the implicitly and explicitly parallel program-
is useful (for which application profile)? ing models, Agplicaions programmers
write SOL programs, which are implicitly
@ How much explicit control is required for e R
systems programmers have carefull
perform a nce? c\éd:d in parallel. 1 H

Slide 10/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Explicit and implicit...: A landscape

HEE Par Cloud
GpH new Monad Haskell
2010 Strategies
Edl
2000 data-par, GpH Concurrent
Haskell Strategies Haskell
Eden
GpH
1990 - -
explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)

Slide 11/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Explicit and implicit...: A landscape

HEE Par Cloud
GpH new Monad Haskell
2010 GPU Strategies Raskell
back-ends Edl + MFI
REPA
2000 Concurrent
data-par. GpH
Hask?::a” Strategies L Haskell
hMPI
Eden
GpH
1990 - -
pH explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)

Slide 11/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Explicit and implicit...: A landscape

EIT Par Cloud
Monad Haskell
2010 GPU o Haskell
back-ends Eg. EdI U
REPA
2000 Concurrent
data-par, GpH
Haskp::h Strategies L Haskell
hMPI
. Eden
1990 . GpH . B
pH explicit
none decom- mapping Commu- synchro-
position nication nisation

Classification of parallel programming paradigms (inspired by D.Skillikorn)

Slide 11/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Overview

e Eden, a parallel Haskell for distributed memory

Slide 12/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Eden Examples in Pictures

Process Abstraction: process ::... (a -> b) -> Process a b
multproc = process (\x -> [x*k | k <- [1,2..]1)

Process Instantiation: () ::... Process ab ->a -> b
multipleb = multproc # 5 5

[parent [—— mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
@ Stream communication for lists

Slide 13/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Eden Examples in Pictures

Process Abstraction: process ::... (a -> b) -> Process a b
multproc = process (\x -> [x*k | k <- [1,2..]1)

Process Instantiation: () ::... Processab ->a -> b
multipleb = multproc # 5 5

[parent [—— mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
@ Stream communication for lists

Spawning many pProcesses: spawn ::... [Process a bl -> [a] —> [b]
multiples = spawn (replicate 10 multproc) [1..10]

par ent

0000000000

v L -

[1,2,3..] 10,20,30..]
2,4,6..] [9,18,27..]

’n’ultproc@‘ ’n’ultproc@ ©oocoo0o0o ’rmltproc@ ’mjltproc @‘

Slide 13/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Eden: Explicit Parallel Evaluation

@ Haskell extended by communicating processes for coordination
@ Developed in Marburg and Madrid since 1996

Eden constructs for Process abstraction and instantiation

process ::(Trans a, Trans b)=> (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]
@ Distributed Memory (Processes do not share data)

Data sent through (hidden) 1:1 channels

Type class Trans: ~ © stream communication for lists
e concurrent evaluation of tuple components

e Full evaluation of process output (if any result demanded)

@ Non-functional features: explicit communication, n: 1 channels

Slide 14/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Eden implementation

@ Interface to Haskell: 10-monadic

primitive operations
ié)
@ Haskell module for functional API L 4
(process, instantiation)
instantiateAt :: Int -> Process a b -> a -> I0 b
instantiateAt p (Proc f_remote) procInput = do
(sendResult, r) <- createComm -- result communicator
(inCC, Comm sendInput) <- createC -- reply: input communicator

sendData (Instantiate p) (f_remote sendResult inCC)
fork (sendInput procInput)
return r

{-# NOINLINE (#) #-}
p#x-= $ instantiateAt O p x

Slide 15/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Implementation layers

In line with the earlier question of required control:

Eden Program
uential Haskell
Eden Module Seq ta S

class Trans, Process, (#) Libraries
rimitives))

Parallel RTE

Sequential RTE

@ Where should the line be drawn between pure and impure code?

Slide 16/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Implementation layers

In line with the earlier question of required control:

Parallel Program in Language X
Language X Module Sequential Haskell
General Framework Module Libraries
EDI Primitives

Parallel Runtime Env. (RTE Sequential RTE

Suitable Middleware

@ Where should the line be drawn between pure and impure code?

@ ...and libraries are not even in the picture

Slide 16/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Overview

@ Skeletons for parallel programming: A Selection
@ Topology Skeletons — and a lesson about strictness
@ Hello-world of parallel FP: maps and beyond (task pools)
@ Algorithmic (higher-level) skeletons

Slide 17/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
The Idea of Skeleton-Basked Parallelism

How much code do you need to
implement a parallel quick sort?

Slide 18/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
The ldea of Skeleton-Basked Parallelism

How much code do you need to
implement a parallel quick sort?

Divide and Conquer, as a higher-order function

divCongB :: (a -> Bool) -- trivial?
-> (a -> b) -- solve
-> (a -> [al) -- split
-> (a -> [b] -> b) -- combine
->a->b

divCongB trivial solve divide combine input = ...

@ Higher-order function defines algorithmic structure
@ Parameter functions define concrete algorithm

e Parallel structure (binary tree) can be exploited for parallelism

Slide 18/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel Data Processing Using Parallel Skeletons

Iteration:

Map-Reduce:

coordinate

T nput

(stlate)
[deci deEn}

out put’

input data

e Parallel Skeletons [Cole 1989]: abstract specification of. ..
@ .. .algorithm structure as a higher-order function.
@ Abstract over concrete tasks (embedded “worker” functions),

@ hidden parallel optimised implementation(s) (machine-specific)

Enable a high-level view on parallel systems and computations

intermediate

Slide 19/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel Data Processing Using Parallel Skeletons

input partitioned distributed
data M MEPPEr niermediate

Processes data (groups)
13N,

n Reducer distributed

Processes output data . .
Distributed
iteration input
% - N

Input
W Input |
(Output Control Body
. -—
1N *

1P
o e

b b b b

(worker) == (worker) ot ¥

Slide 20/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Topology Skeletons — and a lesson about strictness

Slide 21/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Process Topologies as Skeletons: Explicit Parallelism

o Parallel interaction of a process structure described as a
pattern/higher-order function

@ Node behaviour defined as function argument,
skeleton structures parallel interaction;

Examples:
Pipeline/Ring: Master /- Hypercube:
Worker:

Slide 22 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Process Topologies as Skeletons: Explicit Parallelism

o Parallel interaction of a process structure described as a
pattern/higher-order function

@ Node behaviour defined as function argument,
skeleton structures parallel interaction;

Examples:
Pipeline/Ring: Master /- Hypercube:
Worker:

= well-suited for functional languages with explicit parallelism.

@ Explicit notion of parallelism and communication;
@ capitalises on structured methodology and portability.

Slide 22/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?

Slide 23 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:

pipeTR [1 xs = xs
pipeTR (f:fs) xs

pipeTR fs (process f # xs)

Slide 23 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a] 1 -> [a] —> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:

pipeTR [1 xs

*s [parent process |

pipeTR (f:fs) xs - ..
pipeTR fs (process f # xs) i(\‘zf\‘z(\‘—le

Slide 23 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a] 1 -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:

pipeR [] vals = vals
pipeR ps vals = (process (generatePipe ps)) # vals
generatePipe [p] vals = p vals

generatePipe (p:ps) vals =
(process (generatePipe ps)) # (p vals)

Slide 24/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a] 1 -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:

vals
(process (generatePipe ps)) # valsl

pipeR [] vals
pipeR ps vals

parent process |

generatePipe [p] vals = p vals input 3 K output
generatePipe (p:ps) vals = M
(process (generatePipe ps)) # (p vals) ﬂ-ﬂ-ﬂ*ﬂ

Slide 24/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Pipeline (cont.d)

Recursion with dynamic reply channel:

ediRecPipe fs input
= do (inCC,inC) <- createC
(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))
fork (sendNFStream inC input)
return res
doPipe incc resC (f:fs)
= do (inC,input) <- createC
if null fs then sendNF incc inC
else sendData (Instantiate 0)
(doPipe incc inC fs)

sendNFStream resC (f input)

Slide 25/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Pipeline (cont.d)

Recursion with dynamic reply channel:

ediRecPipe fs input
= do (inCC,inC) <- createC
(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))

fork (sendNFStream inC input)
return res
doPipe incc resC (f:fs) | parent process |
= do (inC,input) <- createC input output
if null fs then sendNF incc inC ﬂ m m m
else sendData (Instantiate 0)

(doPipe incc inC fs)
sendNFStream resC (f input)

@ Need to use explicit communication channels!
@ Here written in EDI (I0-monadic Eden Implementation features)

e Can use Remote Data concept instead (not described here).

Slide 25/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Process Topologies as Skeletons: Ring

i L RingSkel N, o]
b b b b

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[r]) > (b,[r])) -> i -> o

ring size makeInput processOutput ringWorker input = ...

e Circulating global data between worker nodes (stream of type (1)
@ All ring processes connect to parent to receive input/send output
@ Parameters: functions for

e decomposing input, combining output, ring worker

Slide 26/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Ring Example: All Pairs Shortest Paths (Floyd-Warshall)

Adjacency Matrix Distance Matrix
0 w12 W13 ... Wi, 0 dip diz ... dig
w2 1 0 w2 3 000 w2 n d2,1 0 d2,3 a0 d2,n
W31 w32 0 .. W3 . d3,1 d372 0 000 d37n
Wni Wp2 Wp3 ... 0 dp1 dp2 dpz o ... 0

@ For each row of distances from node k:
e For all other distance rows /7, in ascending order:
- check if row i indicates a path from k to another node
- if yes, update the distance row k to use the shorter path
@ When row k has been updated with all i < k

e use this updated distance row to update all rows j > k.
i

@ Order of updates matters, but all rows
can be updated for each i simultaneously.

Slide 27/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Ring Example: All Pairs Shortest Paths (Floyd-Warshall)

Adjacency Matrix Distance Matrix

0 wi 2 w13 ... Wip 0 d172 d1,3 500 dl,,,
w21 0 w23 ... Wan d1 0 d3z ... do,
w31 w32 0 oo W3 - d371 d3,2 0 000 d3y,,
Whn,1 Whp,2 Whn,3 ae 0 dn,l dn,2 dn,3 ae 0

Floyd-Warshall: Update all rows k in parallel

ring_iterate :: Int -> Int -> Int —> -> [[Int]] -> (,[[Int]])
ring_iterate size k i rowk rows
| 1 > size = (rowk, [1) -- finished
| i == = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows
(result, rest) = ..777.. ring_iterate size k (i+1) nextrowk xs
nextrowk | i == = rowk

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

Slide 28/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Trace of Warshall Program

First version:

| I T R

With additional early demand

e (result, rest) = rnf nextrowk ‘seq‘
ring_iterate size k (i+1) nextrowk xs
e 0TI RO nextrowk | i == = rowk
ey RGO A | otherwise = updaterow rowk rowi distki
o B5 90 5 55 50 55 40

Slide 29/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Hello-world of parallel FP: maps and beyond (task pools)

Slide 30/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Small-Scale Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent, elementwise, embarrassingly parallel
... probably the most common example of parallelism in FP
e Parallel Reduction: Fold
fold :: (a > a ->a) ->a -> [a] > a
with commutative and associative operation.
e Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.

@ Parallel Map-Reduce:
combining transformation and reduction.

Slide 31/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...

Slide 32/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...

Slide 32/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...distributing in chunks..

| —— |
=
.|
.|

LD

ST T

.| 1 1100 O OO

Very uneven load balance when using chunks (stripes)

Slide 32/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Parallel map Example: Mandelbrot

Mandelbrot set visualisation z,11 = z,% +cforceC

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...distributing round-robin..

LRI TR | O
I T TN) DTNV |
%o b2 ®a be T3 5o Y ¥ 5e Ss Do 52

Better: round-robin distribution, but still not well-balanced.

Slide 32/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Dynamic Load-Balancing: Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a]l > [b]
mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch
@ Master sends a new task each time a result is returned

@ Initial task prefetcn for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance

Slide 33/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Workpool skeleton (simple version)

Simple Workpool Skeleton

mw np prefetch f tasks = map snd fromWorkers

where fromWorkers :: [(Int,r)]
fromWorkers = merge (tagWithIds (parMapEden (map f) taskss))
taskss = (initialReqs ++ newRegs) tasks

initialReqs = concat (replicate prefetch [1..np])
newRequests = map fst fromWorkers
[Int]l -> [t] -> [[t]1]
reqs tasks = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe
taskList _ = [1

tagWithIds rss = [zip (;epeat ;) rs |(i,rs) <-zip [1..] rss]

e Non-deterministic (unsorted results), implemented using merge
@ Returned results tagged, driving task distribution

@ Many variants available in the Eden skeleton library.

http://hackage.haskell.org/package/edenskel/

Slide 34/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

http://hackage.haskell.org/package/edenskel/

Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]l) -> [a] -> [b]

Skeleton and worker function now have the same type!

Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]l) -> [a] -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

mwNested nps pfs wf = foldr fld wf (zip nps pfs)

Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong?
Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

mwNested nps pfs wf = foldr fld wf (zip nps pfs)

S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a]l -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong?
Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

mwNested nps pfs wf = foldr fld wf (zip nps pfs)

S
Nesting the Master-Worker Skeleton

@ Nesting: ... We use a “more practical” interface:

mw’ :: Int -> Int -> ([a] -> [b]) -> [a] -> [b]

Skeleton and worker function now have the same type!

@ 2-Level Nesting:

mw2 npl pfl np2 pf2 wf = mw’ npl pfl (mw’ np2 pf2 wf)

@ General nesting by folding:

f1d :: (Trans t, Trans r) => (Int,Int) -> ([t]->[r]) -> ([t]->[r]
fld (np,pf) wf = mw’ np pf wf

S Branch degrees nps and prefetch values pts per level

ARAR

What can possibly go wrong? wf = drop prefetch T
Slide 35/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

mwNested nps pfs wf = foldr fld wf (zip nps pfs)

S
Dynamically Growing Task Pools

° More Interesting: worker :: task -> (Maybe result, [task])

@ New tasks enqueued in dynamically growing task pool.

@ Backtracking: Explore decision alternatives until desired result.

Slide 36/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Dynamically Growing Task Pools

More Interesting: worker :: task -> (Maybe result, [task])

New tasks enqueued in dynamically growing task pool.

Backtracking: Explore decision alternatives until desired result.

[t]

State: Counter for total no. of tasks

Task counter function:

e consumes output of all workers L
e adds new tasks to task list
o closes task list when counter ==

Slide 36/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Dynamically Growing Task Pools

o More Interesting: worker :: task -> (Maybe result, [task])

@ New tasks enqueued in dynamically growing task pool.

@ Backtracking: Explore decision alternatives until desired result.

[t]
@ State: Counter for total no. of tasks

@ Task counter function:

e consumes output of all workers L
e adds new tasks to task list
o closes task list when counter ==

@ This is a computation scheme, rather than being data-oriented.

Slide 36/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Algorithmic (higher-level) skeletons

Slide 37/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

More algorithm-oriented Skeletons

Backtracking (Tree search)

backtrack :: (a -> (Maybe b, [a]) -- maybe solve problem, refine problem
-> a -> [b] -- start problem / solutions

Divide and conquer

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a => [al) -> (a -> [b] -> b) -- split / combine
->a->b -- input / result
Iteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init
(t -> State ws r) —> -- worker

([r] -> state ms (Either out [t])) -- manager
-> inp -> out

—_ dinate oot
Tnput | (stjate) | |OutPuU

deci deEn,

Slide 38/44 — J.Bertholq{/ @ ég;»— UW%W@@&H&WW&"W@M

Divide & Conquer (simple general version)

divCon :: Int -> (a -> Bool) -> (a -> b) -- depth / trivial? / solve
-> (a => [al) -> (a -> [b] -> b) -- split / combine
->a->b -- input / result

divCon depth trivial solve split combine x
= if depth < 1 then seqDC x
else if trivial x then solve x
else childRs ‘seq‘ -- early demand on children results
combine x (myR : childRs)
where myself = divCon (depth - 1) trivial solve split combine
seqDC x = if trivial x then solve x
else combine x (map seqDC (split x))
(mine:rest) = split x
myR = myself mine
childRs = parMapEden myself rest

Room for optimisation:
@ Number of sub-problems often fixed by the algorithm

@ Processes should be placed evenly on all machines

The Eden skeleton library contains many variants.
http://hackage.haskell.org/package/edenskel/
Slide 39/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

http://hackage.haskell.org/package/edenskel/

Parallel iteration (an algorithmic skeleton)

Iterated parallel map on tasks

—_ ~ dinate oot
input | (stlate) [|OUtPU
iterateUntil :: :
.) . deci deEn
(inp -> Int -> ([ws],[t],ms)) —> -- split/init 7\
(t -> State ws r) —> -- worker

([r] -> State
-> inp -> out

Worker:

Manager:

Applications:

ms (Either out [t])) -- manager

compute result r from task ¢
using and updating a local state ws

decide whether to continue,
based on master state ms and worker results [r].

produce tasks [t] for all workers

N-body, K-means clustering, genetic algorithms. . .

Slide 40/44 — J.Berthold

— Dusty Decks of Parallel HS — FP Syd, 04/2017

S
Iteration Skeletons — Control and Body

Meta-skeleton for iteration:

Distributed

newtype Iter a = ... -- dedicated stream type iteration J.nput
iter :: (inp -> Iter r -> (Iter t,out)) --control g
-> (Iter t -> Iter r) --body “x‘
-> inp -> out --in/out Input
—
Output Control Body
-«
. . K W
@ Type family 1ter characterises streams N T
over parallel data structures T
Dlstrlbuted

iteration output

@ Both body and control can be parallel
skeletons (small type-directed adaptation
of existing skeletons)

@ Communication inside both body and
control part possible

@ Convenience API to express common
variants of body and control

Slide 41/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Overview

© Some conclusions

Slide 42/44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

Some Conclusions

@ Parallel + Functional = High-Level Parallel Programming
e Different skeleton categories (increasing abstraction)

Process topologies, small-scale skeletons, computation &
algorithmic skeletons.

@ Skeletons enable programmers to think parallel

e Clear view on functionality and parallel structure
e High-level specification can expose structural properties

Skeleton Challenges:

e Balance between complexity and flexibility
o Identify useful parameters, heuristics and cost estimates

e Make skeletons (more) compositional

Slide 43 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

...and there is more!

@ http://www.mathematik.uni-marburg.de/~eden/

@ http://hackage.haskell.org/package/edenskel/

@ http://hackage.haskell.org/package/edenmodules/
@ http://github.com/jberthold/ghc

Slide 44 /44 — J.Berthold — Dusty Decks of Parallel HS — FP Syd, 04/2017

http://www.mathematik.uni-marburg.de/~eden/
http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/
http://github.com/jberthold/ghc

	Prelude on dusty decks
	A few things on parallel programming
	Eden, a parallel Haskell for distributed memory
	Skeletons for parallel programming: A Selection
	Topology Skeletons – and a lesson about strictness
	Hello-world of parallel FP: maps and beyond (task pools)
	Algorithmic (higher-level) skeletons

	Some conclusions

