
A combinatorial account of intensional lambda
calculus

Barry Jay
Centre for Artificial Intelligence, University of Technology

Sydney, Australia
Barry.Jay@uts.edu.au

March 22, 2017

1 A combinatorial account of intensional lambda calculus

Abstract

Intensional lambda calculus is, in many ways, an improvement
upon pure lambda calculus, in that its rewriting is closer to
standard programming language practice while still being
confluent, which allows aggressive optimisation. Further, this
calculus can be translated to a combinatory calculus in a way
that preserves reduction, and this without analysing
abstractions, or increasing the term size, thus solving a
problem that has been open for decades. The operators of the
combinatory calculus for abstractions are purpose built, but
exploit ideas about intensionality first developed in SF-calculus.
Key theorems have been verified in Coq. Although this work is
theoretical, it does suggest new avenues for programming
language design and implementation.

1 A combinatorial account of intensional lambda calculus

Why λ-calculus?

It is Turing complete.
It is equational.
It supports abstraction.

By contrast, the combinators of SKI-calculus are Turing
complete, and equational, but abstraction is an afterthought. In
particular, there is a reduction-preserving translation from SKI
to λ

SKI - λ

but the standard translation in the other direction analyses the
bodies of abstractions and so breaks redexes. This defect in
the equivalence of the two calculi is an old puzzle, of preserving
the ξ-rule, which we can now resolve.

1 A combinatorial account of intensional lambda calculus

Why not λ-calculus?

Three calculi (previously seen at FPSyd) are more expressive
than λ-calculus, because intensional. From λ to SF is new.

SKI - λ

SF
��

-

pattern

-

λSF
?��

?
-

- preserves reduction
-- preserves reduction to normal form

1 A combinatorial account of intensional lambda calculus

The ξ-rule, intensionally

SKI - λ �� -- δλ

SF
��

-

pattern

-

λSF
?��

?
-

T
?
� L

?

1 A combinatorial account of intensional lambda calculus

δλ-calculus

δλ-calculus weakens β-reduction to require that the abstraction
body is in weak head normal form

(λx .t)u −→ . . . (t is a whnf) .

This makes the theory easier to work with, and closer to
programming language implementations, without impacting
upon normalisation (evaluation).

1 A combinatorial account of intensional lambda calculus

L-calculus

L-calculus is a combinatory calculus with operators

O ::= U | P | Z | N | Q | H | D | V | R | L .

For example, the λ-abstraction λx .λy .λz.x can be re-written in
a style that is like de Bruin’s, as λ0.λ0.λ0.2 which translates to
the combinator

LZ (LZ (LZ (V (N(NZ))U)))

where L is the abstraction operator, that thrice binds the
variable indexed (in de Bruijn’s style) by Z (for zero), while
V (N(NZ))U is the variable indexed by 2 and having no
arguments, as indicated by the unit value U.

1 A combinatorial account of intensional lambda calculus

T -calculus

T -calculus has a single, ternary operator, the tally | which
represents everything. Looks like machine code, but is
confluent. The tally queries all three of its arguments.

Z N P

Z I = |||
Qi = ||(|i)|

Hij = ||(|i)(|j)
Rtjk = ||(|t)(|jk)

Ljt = ||(|jt)

N ViU = |(|i)| Sst = |(|s)(|t) Vi(Pst) = |(|i)(|st)
P Gst = |(|st)| Astu = |(|st)(|u) Dijst = |(|ij)(|st)

The table describes the meanings of terms of the form |uv . The
rows are for u being | or |i or |ij . The columns are for v . The
abstraction λx .λy .λz.x becomes ||(||(||(||(||(||(|(|(|(||)))|)))))) by

||(| |(||(| |(||(| |(|(|(|(||))) |))))))
L Z (L Z (L Z (V (N(NZ)) U)))

1 A combinatorial account of intensional lambda calculus

Verification in Coq

The properties of all the translations are being verified in Coq
(almost done :) and will be uploaded to GitHub. Modulo these
last steps, the paper has been written.

1 A combinatorial account of intensional lambda calculus

Status of SKI and λ

There is no translation that preserves normalisation
from SF or T to SKI or λ .

Neither SKI nor λ-calculus is complete for computation.

Use SF -calculus or λSF -calculus or T -calculus instead.

1 A combinatorial account of intensional lambda calculus

Say what?

The traditional results on expressive power cannot be used to
argue for the computational completeness of λ-calculus, as
Jose Vergara and I explain in Journal of Logical and Algebraic
Methods in Programming (2017).

λ-definability of numerical functions is relative to an
encoding of numbers as Church numerals.
λ-definability in general is relative to an encoding of
symbols as λ-terms, e.g. by Gödelising to get a number,
and then Church encoding.
λ-calculus supports two encodings, the Church-of-Gödel
encoding and the identity function.
The Church-of-Gödel encoding is not definable wrt the
identity encoding, is not definable within λ-calculus.
The Church-of-Gödel function is definable within
SF -calculus, λSF -calculus and T -calculus.

1 A combinatorial account of intensional lambda calculus

Conclusions

The problem of representing abstraction within a combinatory
calculus is solved by:

weakening β-reduction to abstractions whose body is in
weak head normal form; and
representing abstractions etc. as intensional combinators,
that query the structure of their arguments.

We end up with a menagerie of new calculi, all more powerful
than λ-calculus or SKI-calculus, which expose the weakness
of such extensional calculi, and the ambiguities in traditional
theory.

1 A combinatorial account of intensional lambda calculus

The menagerie

SKI - λ �� -- δλ

SF
��

-

pattern

-

λSF
?��

?
-

T
?
� L

?

1 A combinatorial account of intensional lambda calculus

