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Abstract

Programs have a dual nature, as functions to be used in
applications, and as data structures to be analysed and
optimised during compilation. This talk introduces the
lambda-SF-calculus, in which both natures are realised through
the equations

program = closed normal form = data structure.

The second equation is already a theorem, since the internal
structure of closed normal forms, even abstractions, is fully
exposed by factorisation, mediated by the operator F. The first
equation must account for recursive programs, represented by
fixpoint functions. The fixpoint function has been redefined so
that it preserves normality. It remains to find a way of
separating the programs (which have normal forms) from their
computations (which may fail to terminate).

Barry Jay University of Technology, Sydney Programs as Data Structures in λSF -Calculus



The Wizard of Oz

Dorothy meets three new friends, each of which is missing
something, and a wizard who can help.
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The Friends Abilities

the friends heart courage brains

Tinman

5 3 3

Lion
3 5 3

Scarecrow
3 3 5

Wizard
3 3 3
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The Abilities (technical)

the friends equations prog=data abstraction

Tinman

5 3 3

Lion
3 5 3

Scarecrow
3 3 5

Wizard
3 3 3
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The Friends (technical)

the friends equations prog=data abstraction

Turing model

5 3 3

λ-calculus
3 5 3

SF -calculus
3 3 5

λSF -calculus
3 3 3
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Turing Model

For Turing machines, programs are strings. Their equality is
trivial. Self-interpretation corresponds, more or less, to the
existence of a universal Turing machine. Equational reasoning
is out, and abstraction is difficult.

the friends equations prog=data abstraction

Turing model

5 3 3
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λ-calculus

λ-calculus supports abstraction and equational reasoning,
but abstractions are not data.
No definable equality, Gödelisation or quotation.

the friends equations prog=data abstraction

λ-calculus
3 5 3
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Pattern Calculus

Pattern calculus (Springer, 2009) supports a generic equality
function for data structures:

let rec equal =
| x1 x2 −→ ( | y1 y2 −→ (equal x1 y1) && (equal x2 y2)

| y −→ false)
| x −→ ( | y −→ eqop x y)

so

equal (Cons h1 t1) (Cons h2 t2) −→∗ (equal h1 h2)&&(equal t1 t2) .

So a better account of data, but abstractions are not data, so
no program analysis

equal (λx .x) (λx .x) −→∗ False
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SF -calculus

The terms and reduction rules of SF -calculus (JSL, 2011) are

M,N ::= x | S | F | M N
(S) SMNP −→ MP(NP)
(K ) FOMN −→ M O an operator, S or F
(F ) FPMN −→ NP lPr P a compound of P l and Pr

The compounds are terms of the form SM,SMN,FM,FMN, i.e.
head normal forms. K = FF since KMN = FFMN −→ M.
Any SKX is an identity function since

SKXM −→ KM(XM) −→ M .

However, F is not definable in terms of S,K and I since F can
recover X from SKX , while SKI-calculus is extensional.
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Pattern-Matching in SF -calculus

Now define equal by the pseudo-combinator

let rec equal x y =
F x (eqop x y) (λx1.λx2.

F y False (λy1.λy2.(equal x1 y1)&&(equal x2 y2)))

The fixpoints, abstractions etc. can be defined using traditional
combinatory techniques.
Pattern-matching can also define a self-interpreter (ICFP ’11).
But no abstractions.

the friends equations prog=data abstraction

SF -calculus
3 3 5

Barry Jay University of Technology, Sydney Programs as Data Structures in λSF -Calculus



λSF -Calculus is a Mashup

The terms and reduction rules of λSF -calculus are

M,N ::= x | S | F | λx .M | M N
(λx .M)N −→ {N/x}M

SMNP −→ MP(NP)

FOMN −→ M O an operator, S or F
FPMN −→ NP lPr P a compound of P l and Pr

The compounds now include abstractions.

the friends equations prog=data abstraction

λSF -calculus
3 3 3
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Factoring Abstractions

Factorisation is consistent with equational reasoning because it
does not break any redexes. The compounds are defined to
ensure this. As well as SMN etc., they include the head normal
forms of λ-calculus, such as λx .λy .x M N and some mixed
terms such as λx .F x MN.

If λx .M is a compound then its components are defined using
two tricks, one new and one old.

(λx .M)l = SKF
(λx .M)r = λ∗x .M .

The left component records the presence of an abstraction,
since (SKF )(λ∗x .M) reduces. The right component λ∗x .M
replaces a λ by operators in traditional style, e.g. λ∗x .x = I.
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Some Theorems

1 Reduction is confluent (so at most one normal form)
2 All closed normal forms are either operators or compounds

(and so are factorable)
3 There is a definable conversion of closed normal forms to

combinators that are extensionally and intensionally
equivalent.

Extensional equivalence is defined in terms of βηSK -reduction.
Intensional equivalence means no information loss:

the conversion can be reversed.

All proofs have been verified in Coq.
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Recursive Programs

The identification of programs with closed normal forms, or
closed strongly normalising terms is:

perfectly natural in the Turing model, where a program is a
string, but
counter-intuitive in the λ-calculus since
strongly normalising λ-calculi require the addition of a
fixpoint operator to become Turing complete. However,
there is a fixpoint combinator such that fix f is strongly
normalising if f is, with
non-termination becoming possible only when fix f is
applied to another argument, which
suggests how to ensure programs are closed normal
forms.
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Fresh Approaches

The full power of combinators is revealed by factorisation. The
λSF -calculus suggests fresh approaches to many topics in
language design and implementation, including:

Gödelisation
Self-interpretation
Term constructors
Pattern calculus
Type checking
Evaluation strategy
Partial evaluation
Domain specific languages
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Conclusions

λSF -calculus combines the best properties of the Turing
model, λ-calculus and SF -calculus within a single calculus that
supports

equational reasoning
λ-abstraction and
program analysis

through the identifications

program = closed normal form = data structure
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