Herbie

or: what to do if you can't stop worrying and hate floating
point
Sharif Olorin <sio@tesser.org>

Ambiata

July 10, 2016

<sio@tesser.org>

Arithmetic quiz

sum :: [Double] -> Double

Arithmetic quiz

sum :: [Double] -> Double
sum = foldl (+) 0.0

Arithmetic quiz

sum :: [Double] -> Double
sum = foldl (+) 0.0 . sort

Arithmetic quiz

sum :: [Double] -> Double
sum [] = 0.0
sum xs =

uncurry go $ bisect xs

where
go [yl [1 =1y
go [1 [z] =z
go [yl [z] =y + z
go ys zs =

let (yls, y2s) = bisect ys
(z1ls, z2s) = bisect zs in
(go yils y2s) + (go zls z2s)

bisect ws
let len = length ws ‘div‘ 2 in
(take len ws, drop len ws)

Arithmetic quiz

sum :: [Double] -> Double
sum = fst . foldl add (0.0, 0.0)
where
add (acc, err) x =
let
-— Correct for the error from the last iteration.
y = X - err

acc’ = acc +y
-- Algebraically, err’ should be zero.
err’ = (acc’ - acc) - y

in (acc’, err’)

A cautionary tale

stddev :: Double -> Double
stddev variance = sqrt $ abs variance

A cautionary tale

stddev :: Double -> Double
stddev variance = sqrt $ abs variance

Refresher on IEEE 754

F={sxb®|s,e€Z;be N}

> In general, arithmetic operations are commutative but not
associative.

» Common causes of error are subtracting very similar values
and adding very different values.

» Multiplication, squaring et cetera can compound existing error.

» Rounding contributes at most 0.5 ULPs (units in the last
place) of error per operation.

Refresher on IEEE 754

>

let n = 10
sum . replicaten $ 1 / n
0.9999999999999999

>

X+y—x=y

let x = 10**(-10)

let y = 10**20

printf "%f, Jf\n" y z

.0000000001, 100000000000000000000.0
printf "/f\n" $y + x -y

.0

O > O > > >

What is error?

e(x,y) = log, |z € FP|min(x,y) < z < max(x, y)|

» Error in ULPs: number of floating-point values between the
exact result and the approximate result[3].

» Consistent representation of error independent of magnitude.

» The binary log approximates “number of incorrect bits".

Herbie

» Provides automated synthesis of more accurate versions of
floating-point computations[2].

» Written by Pavel Panchekha et. al. at the University of
Washington.

» Around 10KLOC of Racket.

» Intended for scientists, statisticians, people who don't

necessarily have a background in numerical analysis.

Herbie

Compute exact value

Sample

» Sample inputs are drawn uniformly from the computation’s
domain.

> Herbie defaults to 256 samples per iteration.

» More samples leads to greater probability of identifying
regions of the domain with differing error behaviour.

Error and input domain

4 .

) UG LR l'b"\ I'Q‘J "]‘,‘1’

g ‘ e ,bo"
Bits error versus b O O O

Figure: Herbie's error estimates for the quadratic formula =2+ —4ac Vzgz_d'ac

Focus

—b++b?% —4ac

2a

» For each operator x, evaluate operands a and b in exact
arithmetic for all of the sampled inputs.

» Evaluate ax b in both exact arithmetic and floating-point
arithmetic.

» Focus search on operators which contribute the most error.

“Exact” results

Even with arbitrary precision, how do you know how many bits are
“enough”? Herbie guesses:

» Compute the result with n bits of precision over your entire
sample.
» Do it again with 2n bits.

> |If the most significant 64 bits of the results match, this is your
exact answer; otherwise continue.

Transform

» Hill-climbing greedy search of a database of rewrite rules.

> X2 —y? s (x—y)(x +y)

» Transformations are either mathematical identities or
near-identities - sometimes using an approximation can result
in a numerical result closer to the true value.

» Followed by a series-expansion pass.

> eX—lwx+%X2+%x3 for x =~ 0

» Simplification phase to cancel like terms, et cetera -

pattern-match expressions which can be reduced.

> e%xwy

Regime inference

» Many computations have error characteristics which vary
based on the magnitude of the input within the domain
(“regime”).

» This necessitates the selection of different implementations at
runtime based on the value of the inputs, as no single formula
will be accurate in all cases.

» Herbie localises regime boundaries using the segmented least
squares dynamic programming algorithm[1].

» To avoid overfitting, a penalty is added when evaluating each
segmentation - one bit of error per branch.

A simple example

VR VX1

(herbie-test (x)
"Subtracting square roots"
(- (sqrt x)

(sqrt (- x 1))))

A simple example

VX=VXx=1 -
Time: Input Error: Output Error: Log:
Test: Subtracting square 1 O 6 5 9 9 O 3
Toots . .0S . . Q
Bits: 128 bits
1
VX+Vx-1
= Started with 59.9 bits

Bits error versus x

OO VX-Vx—1

Using strategy 59.9 bits

= Applied flip-- to get. 59.4 bits
. WXP-(Xx-D?
XK= VX T 2
VX X VX+Vx—1
= Applied simplify to get 0.3 bits
Wx)?-(x=1* 1

VX+Vx-—1 VX+Vx-1
Removed slow pow expressions
Original test:

(lambda ((x default))
#:name "Subtracting square roots”
(- (sart x) (sart (- x 1))))

Figure: Herbie report for difference of square roots.

Combining variance of subsamples

m(o-%:m + ,LL%m) + n(arzn—l—l:n + :u’%n—l-l:n) . U%
m-n n+m

2
Ol:n4m =

» 02, is the variance of the subsample from values a to b.

> 2, is the mean of the subsample from values a to b.

Combining variance of subsamples

(herbie-test (mu
mul
[varl (uniform O 100000000)]

[n (< 0 int)]

mu2
[var2 (uniform O 100000000)]

[m (< 0 int)])
"Combine variance of subsamples"
(- (/ (+ (* n (+ varl (sqr mul)))
(* m (+ var2 (sqr mu2))))
(+ n m))
(sqr mu)))

Combining variance of subsamples

n- (varl + mul?) +m- (var2 + mu2?)

— mu? Time: Input Error: Output Error: Log:
e 88m 13 14 Q
Test: Combine variance of subsamples . . .
Bits: 128 bits
(n- (varl +mu1®) +m - (var2 +mu2?)) - L — mu?
= Started with 1.3 bits
n- (varl + mul®) +m- (var2 + mu2?))
- — ma
n+m
s > S > £
N o gj‘ o o «g“» Ky

Bits error versus mu o0 Using strategy rn 1.3 bits

= Applied div-iny to get 1.4 bits
'

n- (varl + mul?) +m - (var2 + mu2? 1
() () —mu? ~ (n- (varl +mul?) +m- (var2 + mu2?)) - —mu?
n+m n+m
L Removed slow pow expressions
5 > : % &
» o & " 8

Bits error versus mul

oo

Figure: Herbie report for combining subsample variance.

Miscellanea

» Herbie: https://github.com/uwplse/herbie

» GHC plugin:
https://github.com/mikeizbicki/HerbiePlugin

» Rust plugin:
https://github.com/mcarton/rust-herbie-1lint

> Valgrind plugin: https://github.com/uwplse/herbgrind

> These slides: https://tesser.org/doc/slides/
2016-05-25-fp-syd-herbie.pdf

https://github.com/uwplse/herbie
https://github.com/mikeizbicki/HerbiePlugin
https://github.com/mcarton/rust-herbie-lint
https://github.com/uwplse/herbgrind
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf

Bibliography

@ Jon Kleinberg and Eva Tardos.
Algorithm design.
Pearson Education India, 2006

@ Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock.

Automatically improving accuracy for floating point expressions.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1-11. ACM, 2015.

@ Eric Schkufza, Rahul Sharma, and Alex Aiken.

Stochastic optimization of floating-point programs with tunable precision.
ACM SIGPLAN Notices, 49(6):53-64, 2014

