
Herbie
or: what to do if you can’t stop worrying and hate floating

point

Sharif Olorin <sio@tesser.org>

Ambiata

July 10, 2016

<sio@tesser.org>

Arithmetic quiz

sum :: [Double] -> Double

Arithmetic quiz

sum :: [Double] -> Double

sum = foldl (+) 0.0

Arithmetic quiz

sum :: [Double] -> Double

sum = foldl (+) 0.0 . sort

Arithmetic quiz

sum :: [Double] -> Double

sum [] = 0.0

sum xs =

uncurry go $ bisect xs

where

go [y] [] = y

go [] [z] = z

go [y] [z] = y + z

go ys zs =

let (y1s, y2s) = bisect ys

(z1s, z2s) = bisect zs in

(go y1s y2s) + (go z1s z2s)

bisect ws =

let len = length ws ‘div‘ 2 in

(take len ws, drop len ws)

Arithmetic quiz

sum :: [Double] -> Double

sum = fst . foldl add (0.0, 0.0)

where

add (acc, err) x =

let

-- Correct for the error from the last iteration.

y = x - err

acc’ = acc + y

-- Algebraically, err’ should be zero.

err’ = (acc’ - acc) - y

in (acc’, err’)

A cautionary tale

stddev :: Double -> Double

stddev variance = sqrt $ abs variance

A cautionary tale

stddev :: Double -> Double

stddev variance = sqrt $ abs variance

σ2
1:n =

1

n

n∑
i=1

(xi − µ1:n)2

Refresher on IEEE 754

F = {s × be |s, e ∈ Z; b ∈ N}

I In general, arithmetic operations are commutative but not
associative.

I Common causes of error are subtracting very similar values
and adding very different values.

I Multiplication, squaring et cetera can compound existing error.

I Rounding contributes at most 0.5 ULPs (units in the last
place) of error per operation.

Refresher on IEEE 754

n · 1

n
= 1

λ let n = 10

λ sum . replicate n $ 1 / n

0.9999999999999999

x + y − x = y

λ let x = 10**(-10)

λ let y = 10**20

λ printf "%f, %f\n" y z

0.0000000001, 100000000000000000000.0

λ printf "%f\n" $ y + x - y

0.0

What is error?

ε(x , y) = log2 |z ∈ FP|min(x , y) ≤ z ≤ max(x , y)|

I Error in ULPs: number of floating-point values between the
exact result and the approximate result[3].

I Consistent representation of error independent of magnitude.

I The binary log approximates “number of incorrect bits”.

Herbie

I Provides automated synthesis of more accurate versions of
floating-point computations[2].

I Written by Pavel Panchekha et. al. at the University of
Washington.

I Around 10KLOC of Racket.

I Intended for scientists, statisticians, people who don’t
necessarily have a background in numerical analysis.

Herbie

Sample

I Sample inputs are drawn uniformly from the computation’s
domain.

I Herbie defaults to 256 samples per iteration.

I More samples leads to greater probability of identifying
regions of the domain with differing error behaviour.

Error and input domain

Figure: Herbie’s error estimates for the quadratic formula −b+
√
b2−4ac

2a

Focus

−b +
√
b2 − 4ac

2a

I For each operator ?, evaluate operands a and b in exact
arithmetic for all of the sampled inputs.

I Evaluate a ? b in both exact arithmetic and floating-point
arithmetic.

I Focus search on operators which contribute the most error.

“Exact” results

Even with arbitrary precision, how do you know how many bits are
“enough”? Herbie guesses:

I Compute the result with n bits of precision over your entire
sample.

I Do it again with 2n bits.

I If the most significant 64 bits of the results match, this is your
exact answer; otherwise continue.

Transform

I Hill-climbing greedy search of a database of rewrite rules.
I x2 − y2 (x − y)(x + y)

I Transformations are either mathematical identities or
near-identities - sometimes using an approximation can result
in a numerical result closer to the true value.

I Followed by a series-expansion pass.
I ex − 1 x + 1

2x
2 + 1

6x
3 for x ≈ 0

I Simplification phase to cancel like terms, et cetera -
pattern-match expressions which can be reduced.

I y
ex−x y

Regime inference

I Many computations have error characteristics which vary
based on the magnitude of the input within the domain
(“regime”).

I This necessitates the selection of different implementations at
runtime based on the value of the inputs, as no single formula
will be accurate in all cases.

I Herbie localises regime boundaries using the segmented least
squares dynamic programming algorithm[1].

I To avoid overfitting, a penalty is added when evaluating each
segmentation - one bit of error per branch.

A simple example

√
x −
√
x − 1

(herbie-test (x)

"Subtracting square roots"

(- (sqrt x)

(sqrt (- x 1))))

A simple example

Figure: Herbie report for difference of square roots.

Combining variance of subsamples

σ2
1:n+m =

m(σ2
1:m + µ2

1:m) + n(σ2
m+1:n + µ2

m+1:n)

m + n
− µ2

1:n+m

I σ2
a:b is the variance of the subsample from values a to b.

I µ2
a:b is the mean of the subsample from values a to b.

Combining variance of subsamples

(herbie-test (mu

mu1

[var1 (uniform 0 100000000)]

[n (< 0 int)]

mu2

[var2 (uniform 0 100000000)]

[m (< 0 int)])

"Combine variance of subsamples"

(- (/ (+ (* n (+ var1 (sqr mu1)))

(* m (+ var2 (sqr mu2))))

(+ n m))

(sqr mu)))

Combining variance of subsamples

Figure: Herbie report for combining subsample variance.

Miscellanea

I Herbie: https://github.com/uwplse/herbie

I GHC plugin:
https://github.com/mikeizbicki/HerbiePlugin

I Rust plugin:
https://github.com/mcarton/rust-herbie-lint

I Valgrind plugin: https://github.com/uwplse/herbgrind

I These slides: https://tesser.org/doc/slides/

2016-05-25-fp-syd-herbie.pdf

https://github.com/uwplse/herbie
https://github.com/mikeizbicki/HerbiePlugin
https://github.com/mcarton/rust-herbie-lint
https://github.com/uwplse/herbgrind
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf

Bibliography

Jon Kleinberg and Éva Tardos.

Algorithm design.
Pearson Education India, 2006.

Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock.

Automatically improving accuracy for floating point expressions.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1–11. ACM, 2015.

Eric Schkufza, Rahul Sharma, and Alex Aiken.

Stochastic optimization of floating-point programs with tunable precision.
ACM SIGPLAN Notices, 49(6):53–64, 2014.

