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Arithmetic quiz

sum :: [Double] -> Double



Arithmetic quiz

sum :: [Double] -> Double

sum = foldl (+) 0.0



Arithmetic quiz

sum :: [Double] -> Double

sum = foldl (+) 0.0 . sort



Arithmetic quiz

sum :: [Double] -> Double

sum [] = 0.0

sum xs =

uncurry go $ bisect xs

where

go [y] [] = y

go [] [z] = z

go [y] [z] = y + z

go ys zs =

let (y1s, y2s) = bisect ys

(z1s, z2s) = bisect zs in

(go y1s y2s) + (go z1s z2s)

bisect ws =

let len = length ws ‘div‘ 2 in

(take len ws, drop len ws)



Arithmetic quiz

sum :: [Double] -> Double

sum = fst . foldl add (0.0, 0.0)

where

add (acc, err) x =

let

-- Correct for the error from the last iteration.

y = x - err

acc’ = acc + y

-- Algebraically, err’ should be zero.

err’ = (acc’ - acc) - y

in (acc’, err’)



A cautionary tale

stddev :: Double -> Double

stddev variance = sqrt $ abs variance



A cautionary tale

stddev :: Double -> Double

stddev variance = sqrt $ abs variance

σ2
1:n =

1

n

n∑
i=1

(xi − µ1:n)2



Refresher on IEEE 754

F = {s × be |s, e ∈ Z; b ∈ N}

I In general, arithmetic operations are commutative but not
associative.

I Common causes of error are subtracting very similar values
and adding very different values.

I Multiplication, squaring et cetera can compound existing error.

I Rounding contributes at most 0.5 ULPs (units in the last
place) of error per operation.



Refresher on IEEE 754

n · 1

n
= 1

λ let n = 10

λ sum . replicate n $ 1 / n

0.9999999999999999

x + y − x = y

λ let x = 10**(-10)

λ let y = 10**20

λ printf "%f, %f\n" y z

0.0000000001, 100000000000000000000.0

λ printf "%f\n" $ y + x - y

0.0



What is error?

ε(x , y) = log2 |z ∈ FP|min(x , y) ≤ z ≤ max(x , y)|

I Error in ULPs: number of floating-point values between the
exact result and the approximate result[3].

I Consistent representation of error independent of magnitude.

I The binary log approximates “number of incorrect bits”.



Herbie

I Provides automated synthesis of more accurate versions of
floating-point computations[2].

I Written by Pavel Panchekha et. al. at the University of
Washington.

I Around 10KLOC of Racket.

I Intended for scientists, statisticians, people who don’t
necessarily have a background in numerical analysis.



Herbie



Sample

I Sample inputs are drawn uniformly from the computation’s
domain.

I Herbie defaults to 256 samples per iteration.

I More samples leads to greater probability of identifying
regions of the domain with differing error behaviour.



Error and input domain

Figure: Herbie’s error estimates for the quadratic formula −b+
√
b2−4ac

2a



Focus

−b +
√
b2 − 4ac

2a

I For each operator ?, evaluate operands a and b in exact
arithmetic for all of the sampled inputs.

I Evaluate a ? b in both exact arithmetic and floating-point
arithmetic.

I Focus search on operators which contribute the most error.



“Exact” results

Even with arbitrary precision, how do you know how many bits are
“enough”? Herbie guesses:

I Compute the result with n bits of precision over your entire
sample.

I Do it again with 2n bits.

I If the most significant 64 bits of the results match, this is your
exact answer; otherwise continue.



Transform

I Hill-climbing greedy search of a database of rewrite rules.
I x2 − y2  (x − y)(x + y)

I Transformations are either mathematical identities or
near-identities - sometimes using an approximation can result
in a numerical result closer to the true value.

I Followed by a series-expansion pass.
I ex − 1 x + 1

2x
2 + 1

6x
3 for x ≈ 0

I Simplification phase to cancel like terms, et cetera -
pattern-match expressions which can be reduced.

I y
ex−x  y



Regime inference

I Many computations have error characteristics which vary
based on the magnitude of the input within the domain
(“regime”).

I This necessitates the selection of different implementations at
runtime based on the value of the inputs, as no single formula
will be accurate in all cases.

I Herbie localises regime boundaries using the segmented least
squares dynamic programming algorithm[1].

I To avoid overfitting, a penalty is added when evaluating each
segmentation - one bit of error per branch.



A simple example

√
x −
√
x − 1

(herbie-test (x)

"Subtracting square roots"

(- (sqrt x)

(sqrt (- x 1))))



A simple example

Figure: Herbie report for difference of square roots.



Combining variance of subsamples

σ2
1:n+m =

m(σ2
1:m + µ2

1:m) + n(σ2
m+1:n + µ2

m+1:n)

m + n
− µ2

1:n+m

I σ2
a:b is the variance of the subsample from values a to b.

I µ2
a:b is the mean of the subsample from values a to b.



Combining variance of subsamples

(herbie-test (mu

mu1

[var1 (uniform 0 100000000)]

[n (< 0 int)]

mu2

[var2 (uniform 0 100000000)]

[m (< 0 int)])

"Combine variance of subsamples"

(- (/ (+ (* n (+ var1 (sqr mu1)))

(* m (+ var2 (sqr mu2))))

(+ n m))

(sqr mu)))



Combining variance of subsamples

Figure: Herbie report for combining subsample variance.



Miscellanea

I Herbie: https://github.com/uwplse/herbie

I GHC plugin:
https://github.com/mikeizbicki/HerbiePlugin

I Rust plugin:
https://github.com/mcarton/rust-herbie-lint

I Valgrind plugin: https://github.com/uwplse/herbgrind

I These slides: https://tesser.org/doc/slides/

2016-05-25-fp-syd-herbie.pdf

https://github.com/uwplse/herbie
https://github.com/mikeizbicki/HerbiePlugin
https://github.com/mcarton/rust-herbie-lint
https://github.com/uwplse/herbgrind
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf
https://tesser.org/doc/slides/2016-05-25-fp-syd-herbie.pdf
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