v

rac

()] i
m:i = 95 g‘usst;gé
DE reduction
HH N [=F @ partial
HE- A Q frcsion
L Et=H B A
o I3
2 282 " 25 Egs
R ot Ea
L] i
Fes Gdy)
D% 12553
Q S 4
i e
=4, HED
H m'iip

Talk at FP Syd, April 2016

Yet another DSL for

Financial Contracts
— and the story behind it —

Jost Berthold*
jberthold@acm.org

Commonwealth Bank

(*formerly *University of Copenhagen)

Joint work with Martin Elsman* and
Patrick Bahr* (now ITU Copenhagen)
published at ICFP 2015*

1 .
https://github.com/HIPERFIT/contracts

https://github.com/HIPERFIT/contracts

About the Speaker: Jost Berthold

Research: Concepts/Implementation of Parallel
Functional Programming

...and sometimes other topics.

2008 Dr.rer.nat. — Philipps-Universitat Marburg
2008 Research Intern — Microsoft Research (GHC)
PostDoc, SCIEnce — University of St.Andrews
2009 PostDoc, grid.dk — University of Copenhagen
2011 Assistant Professor, HIPERFIT — U.Copenhagen
2015 Commonwealth Bank

Slide 2/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Overview

© Prelude

@ Sneak Preview
@ The Context

© Introducing the DSL

© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis
@ Contract Transformations
@ Contract Simplification
o Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
© Epilogue

Slide 3/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

© Prelude

@ Sneak Preview
@ The Context

© Introducing the DSL
© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics

@ Causality of Contracts
@ Contract Analysis

@ Contract Transformations
@ Contract Simplification
e Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
@ Epilogue

Slide 4/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Sneak Preview: The Contract Language

Contract in natural language
@ At any time within the next 90 days,
@ party X may decide to
e buy EUR 1000 from party Y,
@ for a fixed rate 1.15 of USD.

Translation into our contract language

if obs(X exercises option, 0) within 90
then 1000 x (EUR(Y — X) & (1.15 x USD(X — Y)))

else ()

Slide 5/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

HIPERFIT — Functional High-Performance Financial IT

e state-funded Danish research initiative (centre), 2011 — 2016

@ DSLs and FP for math/finance — on parallel computing platforms

@ Hiels Bohr Institutet

LexiFi

Code Examples

Futharkstil lacks many of the syntactical iceties that one might desire i

e Math-Finance
DSL

LS

Renalenarios

E Model specmc.amn Mode| D S LS
E
= Fmanc.a\mtmmauan specification J
z [
: = o parallel FP
&
(High- penmmsnce backends]
© Mathematical Finance @ Functional Programming e
@ Domain-Specific Languages @ High-Performance Systems * *

Slide 6/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Martin Elsman — Patrick Bahr —
HiperriT, DIKU ITU, formerly DIKU

Slide 7/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

A DSL vision. . .

DSL DSL
. Contract Model

Working with a risk management team
from one of our partners. ..
a vision emerged:

Banks have large portfolios of derivatives
Example: FX derivatives (promise or option to Required /desireds for this
buy, "insurance" against rate moves, choice of DSL:

currency.
y--) what-if scenarios

...and likelihoods

multiple parties

@ Analyse a portfolio symbolically;

@ consider the entire portfolio together;

compositional
contracts

...using an appropriate DSL.

avoid focus on pricing

Slide 8/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Existing DSLs for Financial Contracts

MLFi language? by Lexifi, for contract management and valuation
@ Core product: pricing

@ integrated in contract management software

Examp|e: “Zero—coupon bondS” (MLFi-Haskell paraphrased)
eul = zcb (date "1 May 2016") 100 EUR :: Contract
usl = zcb (date "1 May 2016") 115 USD :: Contract
eu2 = zcb (date "31 Jul 2016") 100 EUR :: Contract

¢ = (eul ‘or' wusl) ‘and' give eu?2

@ How “valuable” is the above opportunity? ‘
luati i ‘
Contract valuation semantics \UJ.J%MM Mﬁ

= |

@ Used today in a number of banks: similar '

Peyton Jones, Eber, Seward. Composing contracts: an adventure in financial engineering. ICFP'00, ACM (2000)

;

Slide 9/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Another example. .. and what we did not like

“Amel’lcan FX Put Opt'on” (MLFi-Haskell paraphrased)
americanPut = anytime (between tI1 t2) zero sell
where t1 = date "01 May 2016"
t2 = date "31 Jul 2016"
amount = konst 1000
strike = konst 1.15
sell = scale amount

(one EUR ‘and‘' give (scale strike (one USD))

@ Great for contract management and valuation:
@ But: who is buying?
@ And difficult to compose with absolute dates in it ¢1,t2

@ Observables carry modeling information
(in many implementations)

Slide 10/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

@ Prelude
@ Sneak Preview
@ The Context
© Introducing the DSL
© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis
@ Contract Transformations
@ Contract Simplification
@ Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
@ Epilogue

Slide 11/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Compositional Multi-Party Contracts

American Put again — in our contract language

if obs(X exercises option, 0) within 90

then 1000 (EUR(Y — X)& (1.15xUSD(X — Y)))
else ()

Atoms: Asset transfer (here: FX, can be any asset)
scaling and combining similar to MLFi

Observation (X exercises option) explicit, observed with label
and time

Relative time (need to fix a date externally)
Parties named explicitly for all transfers

americanl = if bobs (Decision X "exercise" 0) ‘within' 90

then 1000 # (transfer Y X EUR & 1.15 # transfer X Y USD)
else zero

Slide 12/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

equity = "Carlsberg®” (+ Carlsberg stock call optiem *)
maturity = 12 * 30
exa =
let val strike = 50.0
val nemimal = 1000.0
wal obs = max(R 0.0, obs(equity,0) !-! R strike)
in scale(R nominal,
transl(maturity,
scale(obs, transfOne (EUR, “you',"ne"))))
end

Cash flows in 360 days:

Cashflows:

2013-12-26 Certain [you->me] EUR (1000.0%max(0.0, (Obe(Caxlsbexgt0)-50.0)))

This is a European, or "Vanilla" option.

When we started our language experiments we used Standard ML.

e working on simple stock
options and FX derivatives

@ First concentrating on
potential applications

o Expected cash flows
(management)

o Simplification,
execution of contracts

Slide 13/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

...a bit later

Switching to Haskell allowed for better expression types.

Simple examples

@ Refining the language

A complex OTC barrier touch option

b constructs
barrierRevConkert :: MContract
barrierRevConvert .
Tk brembhed (tanel’ ¢ | @ Trying to cover more

(iff (oneBelow 1)

(collect EUR minRatia) (collect EUR" 100:0)) | Opt|on types (introducing

zero) where

idxs | - - - » |
spobd = [3758.05, 11840, 1200 | f
oieBelow d = foldll (!|!) (zipWith (empFrac d) idxs spots) new teatures
cmpFrac d idx spot = obs(idx, 0) !<l d = spot
minRatio = foldll minn .

(zipWith (Aid sp — obs(id.0)) idxs spots) [+] | y h h
breached = acc (Ax — x !|! oneBelow 0.7) 366 (oneBelow 0.7) R nOt always Wlt t €

collectEUR amount = scale amount (transfOne EUR

prettiest surface syntax
@ barrier of 0:7,spot.0n 3 indexes, monitored over 367 days;
o payment if barrier breached, scaled if at least one end index

lower than start

This is a complex OTC barrier contract with 3 underlyings.

Slide 14/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

More Options

Asian Option After 90 days, party X may decide to buy USD 100; paying the
average of the exchange rate USD to DKK observed over the last 30 days.
asian = 90 1 if obs(X exercises option, 0) within 0
then 100 x (USD(Y — X) &(rate x DKK(X — Y)))
else ()

where rate = acc(Ar. r + obs(FX(USD, DKK), 0),30,0)/30

@ Note the strike price is an average (market price during the last
30 days)

@ rate is a metavariable.

asian = 90 ! if bObs (Decision X "exercise") 0
then 100 # (transfer Y X USD & (rate # transfer X Y DKK))
else zero
where rate = (acc (Ar — r + rObs (FX USD DKK) 0) 30 0) / 30

Slide 15/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Overview of the Contract Language

Contract combinators

o () e 1 &

e a(p— q) eletx=ceinc

edfc @ if e within d then ¢; else ¢
@ exc

Expression Language
Real-valued and Boolean-valued expressions, extended by
obs(/, d) observe the value of / at time d

acc(f,d, e) accumulation over the last d days

Implementation in Coq, extracting Haskell code (types replaced by
Haskell types)

Slide 16/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

@ Prelude
@ Sneak Preview
@ The Context
© Introducing the DSL
© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis
@ Contract Transformations
@ Contract Simplification
@ Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
@ Epilogue

Slide 17/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Chond = if obs(X defaults, 0) within 30 then ()
else 1000 x EUR(X — Y)

Cons = (10 x EUR(Y — Z)) & if obs(X defaults, 0) within 30
then 900 x EUR(Z — Y)
else ()

Chond & Cops = (10XEUR(Y — Z)) & if obs(X defaults, 0) within 30
then 900 x EUR(Z — Y)
else 1000 x EUR(X — Y)

Slide 18/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

[-].: Contr x Env — CashFlow

[cl,= To T T3 T4

-4 -3 -2 -1 0 1 2 3 4 time

P
[cl, € CashFlow = N — Transactions
T; € Transactions = Party x Party x Asset — R
pE Env = Label x Z - BUR

Slide 19/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Denotational Semantics: Some Details

’s[[e}] 1] XEnv%[[T]]‘

@ Accumulator steps

Elel ifd=0
i i E AX. d = il
forward in time [acc(Ax. e1,d,)], , {g[elﬂv[wv“ Fd>0
where v=_E[acc(e,d — 1L e)], /1

[e] : [T] x Env — N — Party x Party x Asset — R

@ Each cash flows
appears twice:

AnAt0 ifp=gq

unita pq otherwise, where

la(p — 9], , {
1 ifb=ap=p,9=4q¢,n=0

unita,p,q(n)(p’,qﬂb) = -1 ifb= a,p= qlzq:p,7n:0
0 otherwise

@ Variables invade everything: [let x = einc], , =[cl, s, > Where v=_E[e], ,

Slide 20/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

[-].: Contr x Env — CashFlow

o Contract and external environment naturally separated
@ Scenarios: selected environments
@ Simulation: statistical model of environments

@ Symbolic analysis: on contracts, not environments

Slide 21/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Contract Equivalences

We were contemplating contract equivalences very early in this work.

Basic Contract Equivalences

Some contract equivalences

Expression promotion:
Expressions involving observables can be promoted from a time
later to a time earlier: (e€Expra. ded)

obs(s.d +1): e=obs(s.i)
efd=1{ e/dield e-ace

An expression is certain if it does not depend on observables.

They enable simplification
of large portfolios.
... especially useful when

contracts are also
transformed.

.. .enables equivalences with transl

transl d (scale s c) = seale (s/d) (transl d c)
transl d (scale § ¢) = scale s (transl d ¢) if 5 is certain
transl d (checkWithin be ¢) =
checkWithin (b/d) e (transl d ¢1) (transl d &)

transl d (iff b ey @) = iff (b/d) (transl d &) (transl d)

Some are very simple,

some involve promoting
expressions in time.

... but the CDS equivalence is not proven by any of our rules :-)

Slide 22/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Another Tricky Detail: Contract Causality

A funny contract. . . (X pays tomorrow’s price of one EUR to Y today 777)

funny = obs(FX(EUR, USD), 1) x USD(X — Y)

Contracts may be non-causal.

@ No reference to observables in the future: obvious causality.
But some transformations may introduce future observable values.
Some contracts are typically expressed using references to future.

@ Advanced time-indexed type system to infer contract causality.

e Causality not compositional (non-causal transfers can cancel out)

Slide 23/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

@ e: Real’, e: Bool" value of e available -« ©'= + (and later)

e c: Contr! no obligations strictly before ¢

'Fe:Real® Thkc:Contrr t<s
e x c: Contrt

| € Label, t<s t<0
I+obs(/,t):7° I+ a(p— q): Contrt

Slide 24/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Time until a contract is guaranteed to be ():
Approximated by a simple syntax-directed analysis

d is the horizon of a contract: € - d: (c contr , o € Ef)

zero 10 (2
bire cHbs by < bs
H-TO
transfOne (C‘pl.‘pz)"U 4) scale (E,C)"bz
cHi a4 -k
- H-TL o HOR(a
transl (d, c) 1 (i + d) (H-TL) both (c1,c2) 4 max(by, ba) (H-Bath) ((
HOR(let x -
Obe b o HOR
eh ed 3 ' c;z = (H-cw)
checkWithin (e, d, &, ©) - (d + max(by, by)) if e witl
H
Intuition: € - f means the last transfer may happen after no more then c1€

where

than i days (H-TL and max). ¢ may or may not be causal (H-S

Contract Analysis: More (older) experiments. . .

Initial purpose: Risk analysis. Some ideas we had. ..

_ontract analysis: finding branch boundaries

@ Symbolic analysis: branch
boundaries depending on
observable values

data Trigger = Trigger { underlying
art Int
lucs

beanch fonnds <+ Momtract — | 1
@ Finds.all observables which occur inside conditionals 4 PU rpose ta I’geted
Goal: generate tree of scenarios with fixings. . | . f . k
@ A Tiigger is an observable and its boundary values for a certain simu atlon or ris

time range within a-contract herizon.

purposes

Example: our touch options from before
#Main> (putS8trLln . pplriggers . branchBounds) touchOptions
FX USD/SEK from day O to 182: 6.1500, 6.2500, 6.7000, 6.9000 ° |ncomp|ete’ Worked on
only some Boolean

FX USD/SEK from day 183 to 365: 6.1500, 6.2500
expressions

@ Hedging advice based on simulation

@ Level-of-detail adjustment, to simplify a portfolio

Slide 26/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

@ Prelude
@ Sneak Preview
@ The Context
© Introducing the DSL
© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis
@ Contract Transformations
@ Contract Simplification
@ Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
@ Epilogue

Slide 27/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Contract Equivalences for Simplification

Can use equivalences to rewrite contracts

eg X (eaxc)=(e1-e)xc dt0=0
dit(dtc)=(d+d)Tc x (=0
dt(a&ec)=(d1tca)&(dt) 0><cz®
ex(a&a)=(exa)&lex) &0 =c

dt(exc)=(dfre)x(dtc)

a&o=0&a
(e1 xc)&(e2xc)=(e1+ &) xc

d 1 if b within e then ¢; else ¢; =
if d ft b within ethen d 1 c; else d 1

@ ...assuming a preference of one form over the other

Slide 28/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Contract Specialisation

Goal: simplify contracts based on available external information

@ Known decisions = Eliminate branches

@ Known observable values = Compute scaling, eliminate branches

Specialised contract: considers information from partial environment.

spec : Envp x Contr — Contr
c =, spec(p, c) for p € Envp
Envp : Label; x Z — [7] (partial)

@ The contract is modified, no general equivalence.

e Equivalence =, (p € Envp) limited to p’ : Env that extend p,
i.e. p/ € Env with p(I,t) = p/(/, t)for all(/, t) € dom(p).

@ Implementation using smart constructors: earlier equivalences.

Slide 29/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Contract Reduction

Transformations so far: based on equivalences and partial knowledge.
No actual contract execution (deciding, fulfilling transfers, etc.)

Contract transformation in time:

@ As time passes, contracts gradually evolve into empty contracts:

Advancing a contract in time.

(a major motivation for MLFi and
many in-house languages).

@ Semantic model: Contract reduction with associated transfers

e Assumes given (complete) environment and causal contract
e Proved sound and adequate with these assumptions

Slide 30/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

0 1 2 3 4 5 6 time

To T T, T3 Ty Ts
C==pC ==p Q@ ==p QB =—=>p C =) G5 =

Slide 31/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

@ Prelude

@ Sneak Preview
@ The Context

© Introducing the DSL

© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis

@ Contract Transformations
@ Contract Simplification
@ Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
@ Epilogue

Slide 32/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Embedding in Coq, Generating Haskell

Coq formalisation
Denotational semantics is the starting point
@ Adequacy of reduction semantics
e Type safety (well-typed ~~ causal)
@ Soundness & completeness of type inference

@ Soundness of partial evaluation & horizon inference

Extraction of executable Haskell code
o efficient Haskell implementation
@ embedded domain-specific language for contracts

@ contract analyses and contract management

Slide 33/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Contracts in Haskell — Example

{—# LANGUAGE RankNTypes, RebindableSyntax #—}

module Options where
import Rebindable EDSL
import Prelude hiding (ifThenElse, (»=), (»), min, maz)

asian :: Contr —— asian option
asitan = 90 ! if bObs (Decision X "exercise") 0
then 100 # (transfer Y X USD & (rate # transfer X Y DKK))
else zero
where rate = (acc (A\r — r + rObs (FX USD DKK) 0) 300) / 30

chooser :: Contr —— chooser option, looks non—causal
chooser = do price < rObs (FX DKK USD) 60
payout < ife (bObs (Decision X "call option") 30)
(max (price — strike) 0)
(maz (strike — price) 0)
60 ! (payout # transfer Y X DKK)
where strike = 6.5 —— :: Exp R

weird :: Contr ——non—causal example
weird = rObs (FX EUR USD) 1 # transfer X Y USD

Slide 34/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Type ‘& exp (* Expressione =)

type bexp = bool exp (« Booleen expressions)
type "a num

type ‘a nexp = ‘2 num exp (+ Mumeric expressions)
type rexp = reml nexp (+ real expressions)
Type lexp = int nexp (* integer expressions =)
val I int — iexp

val R real — rexp

val B : bool — bexp

val & ¢ nexp * ‘s nexp —+ *B nexp (& max, +, ... ¥}

SML vl abs string * int — rexp

data Expr a where

Int — Expr Int — Int

Double —+ Expr Double — Double

Bool — Expr Bool — Bool

Var — Expr a — Variable
—— | arithmetic operations. + — = | max min

—— | logical operations: < = ! |

: Ord a = Expr a = Expr a — Expr Bool
: Egqa = Expr a —- Expr a — Expr Bool
Expr Bool — Expr Bool

Expr Bool — Expr Bool — Expr Bool

Haskell: type RealE = Expr Double; type BoolE = Expr Bool

Inductive Exp : Set := OpE {op : Op) (args : list Exp)
| Obs (1:0bsLabel) (i: Z)
| varg (v:Var)

Coq/Haske” | Acc (f : Exp) (d : nat) (e : Exp).

iata Exp =
OpE Op {List Exp)
| Obs ObsLabel Int

aTE—Var

Slide 35/37 — J.Berthold (CBA) — Yet anothe+ §QP¥§EtIP§'E and the story...

@ Prelude
@ Sneak Preview

@ The Context
Introducing the DSL

(2
© Denotational Cash-Flow Semantics
@ Cash-Flow Semantics
@ Causality of Contracts
@ Contract Analysis
@ Contract Transformations
@ Contract Simplification
@ Contract Specialisation
@ Contract Reduction (+Second Semantics)

© DSL Embedding
© Epilogue

Slide 36/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

Summary of our Journey today

Thanks for joining me on this journey. ..

@ Starting from some simple coding experiments in SML

@ ...with reasonably clear goals (risk managemnt, symbolic
computation),

@ via some embedding experiments in Haskell

@ ...and gradually introducing more and more formal treatment,
(1 leaving the original bank partner on the track, sorry t)

@ to the final result implemented in Coq:
Certified analysis and transformation

of well-typed causal contracts
(which attracted interest of research community and Lexifi)

Slide 37/37 — J.Berthold (CBA) — Yet another Contract DSL — and the story...

	Prelude
	Sneak Preview
	The Context

	Introducing the DSL
	Denotational Cash-Flow Semantics
	Cash-Flow Semantics
	Causality of Contracts
	Contract Analysis

	Contract Transformations
	Contract Simplification
	Contract Specialisation
	Contract Reduction (+Second Semantics)

	DSL Embedding
	Epilogue

