
Yet another DSL for
Financial Contracts
– and the story behind it –

Jost Berthold∗
jberthold@acm.org

Commonwealth Bank
(∗formerly ‡University of Copenhagen)

Joint work with Martin Elsman‡ and
Patrick Bahr∗ (now ITU Copenhagen)

published at ICFP 20151

Talk at FP Syd, April 2016

1
https://github.com/HIPERFIT/contracts

https://github.com/HIPERFIT/contracts

About the Speaker: Jost Berthold

Research: Concepts/Implementation of Parallel
Functional Programming

. . . and sometimes other topics.

2008 Dr.rer.nat. – Philipps-Universität Marburg
2008 Research Intern – Microsoft Research (GHC)

PostDoc, SCIEnce – University of St.Andrews
2009 PostDoc, grid.dk – University of Copenhagen
2011 Assistant Professor, Hiperfit – U.Copenhagen
2015 Commonwealth Bank

Slide 2/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 3/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 4/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Sneak Preview: The Contract Language

Contract in natural language
At any time within the next 90 days,
party X may decide to
buy EUR 1000 from party Y,
for a fixed rate 1.15 of USD.

Translation into our contract language

if obs(X exercises option, 0) within 90
then 1000× (EUR(Y → X) & (1.15× USD(X → Y)))
else ∅

Slide 5/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Hiperfit – Functional High-Performance Financial IT

state-funded Danish research initiative (centre), 2011 – 2016
DSLs and FP for math/finance – on parallel computing platforms

Math-Finance
DSLs
parallel FP

Contract

DSL

Model

DSL

Pricing

Engine

Slide 6/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Martin Elsman –
Hiperfit, DIKU

Patrick Bahr –
ITU, formerly DIKU

Slide 7/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

A DSL vision. . .

Working with a risk management team
from one of our partners. . .
a vision emerged:

Banks have large portfolios of derivatives
Example: FX derivatives (promise or option to
buy, "insurance" against rate moves, choice of
currency. . .)

Analyse a portfolio symbolically;
consider the entire portfolio together;

. . . using an appropriate DSL.

Required/desireds for this
DSL:

what-if scenarios
. . . and likelihoods
multiple parties
compositional
contracts
avoid focus on pricing

Slide 8/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Existing DSLs for Financial Contracts
MLFi language2 by Lexifi, for contract management and valuation

Core product: pricing
integrated in contract management software

Example: “Zero-coupon bonds” (MLFi-Haskell paraphrased)

eu1 = zcb (date " 1 May 2016 ") 100 EUR : : Contract
us1 = zcb (date " 1 May 2016 ") 115 USD : : Contract
eu2 = zcb (date " 31 Jul 2016 ") 100 EUR : : Contract

c = (eu1 ‘or ‘ us1) ‘and ‘ g ive eu2

How “valuable” is the above opportunity?
Contract valuation semantics
Used today in a number of banks: similar
in-house languages

2Peyton Jones, Eber, Seward. Composing contracts: an adventure in financial engineering. ICFP’00, ACM (2000)
Slide 9/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Another example. . . and what we did not like

“American FX Put Option” (MLFi-Haskell paraphrased)

americanPut = anytime (between t1 t2) zero s e l l
where t1 = date " 01 May 2016 "

t2 = date " 31 Jul 2016 "
amount = konst 1000
s t r i k e = konst 1 .15
s e l l = s c a l e amount

(one EUR ‘and ‘ g ive (s c a l e s t r i k e (one USD))

Great for contract management and valuation:
But: who is buying?
And difficult to compose with absolute dates in it t1 , t2
Observables carry modeling information

(in many implementations)

Slide 10/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 11/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Compositional Multi-Party Contracts

American Put again – in our contract language

if obs(X exercises option, 0) within 90
then 1000×(EUR(Y → X)& (1.15×USD(X → Y)))
else ∅

Atoms: Asset transfer (here: FX, can be any asset)
scaling and combining similar to MLFi
Observation (X exercises option) explicit, observed with label
and time
Relative time (need to fix a date externally)
Parties named explicitly for all transfers

american1 = if bobs (Decision X "exercise" 0) ‘within‘ 90
then 1000 # (transfer Y X EUR & 1.15 # transfer X Y USD)
else zero

Slide 12/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

In the beginnings. . .

When we started our language experiments we used Standard ML.

working on simple stock
options and FX derivatives
First concentrating on
potential applications

Expected cash flows
(management)
Simplification,
execution of contracts

This is a European, or "Vanilla" option.

Slide 13/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

. . . a bit later

Switching to Haskell allowed for better expression types.

Refining the language
constructs
Trying to cover more
option types (introducing
new features)
. . . not always with the
prettiest surface syntax

This is a complex OTC barrier contract with 3 underlyings.

Slide 14/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

More Options

Asian Option After 90 days, party X may decide to buy USD 100; paying the
average of the exchange rate USD to DKK observed over the last 30 days.

asian = 90 ↑ if obs(X exercises option, 0) within 0
then 100× (USD(Y → X) &(rate × DKK(X → Y)))
else ∅

where rate = acc(λr . r + obs(FX(USD,DKK), 0), 30, 0)/30

Note the strike price is an average (market price during the last
30 days)
rate is a metavariable.

asian = 90 ! if bObs (Decision X "exercise") 0
then 100 # (transfer Y X USD & (rate # transfer X Y DKK))
else zero

where rate = (acc (λr → r + rObs (FX USD DKK) 0) 30 0) / 30

Slide 15/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview of the Contract Language

Contract combinators
∅
a(p → q)
d ↑ c
e × c

c1 & c2
let x = e in c
if e within d then c1 else c2

Expression Language
Real-valued and Boolean-valued expressions, extended by

obs(l , d) observe the value of l at time d
acc(f , d , e) accumulation over the last d days

Implementation in Coq, extracting Haskell code (types replaced by
Haskell types)

Slide 16/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 17/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Example: Credit Default Swap

Bond
Cbond = if obs(X defaults, 0) within 30 then ∅

else 1000× EUR(X → Y)

Credit Default Swap
CCDS = (10× EUR(Y → Z)) & if obs(X defaults, 0) within 30

then 900× EUR(Z → Y)
else ∅

Cbond & CCDS ≡ (10×EUR(Y → Z)) & if obs(X defaults, 0) within 30
then 900× EUR(Z → Y)
else 1000× EUR(X → Y)

Slide 18/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Denotational Semantics

J·K· : Contr × Env→ CashFlow

JcKρ = T0 T1 T2 T3 T4 . . .

time0 1 2 3 4−1−2−3−4
R0 R1R−1 R2R−2 R3R−3 R4R−4

ρ

JcKρ ∈ CashFlow = N→ Transactions
Ti ∈ Transactions = Party × Party × Asset→ R

ρ ∈ Env = Label× Z→ B ∪ R
Slide 19/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Denotational Semantics: Some Details

Accumulator steps
forward in time

E JeK : JΓK× Env→ JτK

E Jacc(λx . e1, d , e2)Kγ,ρ =
{
E Je2Kγ,ρ if d = 0
E Je1Kγ[x 7→v],ρ if d > 0

where v = E Jacc(e1, d − 1, e2)Kγ,ρ/−1

Each cash flows
appears twice:

JcK : JΓK× Env→ N→ Party × Party × Asset→ R

Ja(p → q)Kγ,ρ =
{
λn.λt.0 if p = q
unita,p,q otherwise, where

unita,p,q(n)(p′, q′, b) =

1 if b = a, p = p′, q = q′, n = 0
−1 if b = a, p = q′, q = p′, n = 0
0 otherwise

Variables invade everything: Jlet x = e in cKγ,ρ = JcKγ[x 7→v],ρ , where v = E JeKγ,ρ

Slide 20/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Denotational Semantics

J·K· : Contr × Env→ CashFlow

Contract and external environment naturally separated
Scenarios: selected environments
Simulation: statistical model of environments
Symbolic analysis: on contracts, not environments

Slide 21/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Equivalences

We were contemplating contract equivalences very early in this work.

They enable simplification
of large portfolios.
. . . especially useful when
contracts are also
transformed.

Some are very simple,
some involve promoting
expressions in time.

. . . but the CDS equivalence is not proven by any of our rules :-)
Slide 22/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Another Tricky Detail: Contract Causality

A funny contract. . . (X pays tomorrow’s price of one EUR to Y today ???)

funny = obs(FX(EUR,USD), 1)× USD(X → Y)

Contracts may be non-causal.

No reference to observables in the future: obvious causality.
But some transformations may introduce future observable values.
Some contracts are typically expressed using references to future.

Advanced time-indexed type system to infer contract causality.
Causality not compositional (non-causal transfers can cancel out)

Slide 23/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Type System

Time-Indexed Types
e : Realt , e : Boolt value of e available at time t (and later)
c : Contrt no obligations strictly before t

Essential Typing Rules

Γ ` e : Reals Γ ` c : Contrs t ≤ s
Γ ` e × c : Contrt

l ∈ Labelτ t ≤ s
Γ ` obs(l , t) : τ s

t ≤ 0
Γ ` a(p → q) : Contrt

...

Slide 24/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Analysis: Horizon

Time until a contract is guaranteed to be ∅:
Approximated by a simple syntax-directed analysis

Syntactic analysis approximates the actual (semantic) horizon.
in newer version: zero has no horizon.

Slide 25/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Analysis: More (older) experiments. . .

Initial purpose: Risk analysis. Some ideas we had. . .

Symbolic analysis: branch
boundaries depending on
observable values
Purpose: targeted
simulation for risk
purposes
Incomplete, worked on
only some Boolean
expressions

Hedging advice based on simulation
Level-of-detail adjustment, to simplify a portfolio

Slide 26/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 27/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Equivalences for Simplification

Can use equivalences to rewrite contracts

e1 × (e2 × c) ≡ (e1 · e2)× c
d1 ↑ (d2 ↑ c) ≡ (d1 + d2) ↑ c
d ↑ (c1 & c2) ≡ (d ↑ c1) &(d ↑ c2)
e × (c1 & c2) ≡ (e × c1) &(e × c2)

d ↑ (e × c) ≡ (d ⇑ e)× (d ↑ c)
(e1 × c) &(e2 × c) ≡ (e1 + e2)× c

d ↑ ∅ ≡ ∅
r × ∅ ≡ ∅
0× c ≡ ∅
c & ∅ ≡ c

c1 & c2 ≡ c2 & c1

d ↑ if b within e then c1 else c2 ≡
if d ⇑ b within e then d ↑ c1 else d ↑ c2

. . . assuming a preference of one form over the other

Slide 28/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Specialisation

Goal: simplify contracts based on available external information

Known decisions ⇒ Eliminate branches
Known observable values ⇒ Compute scaling, eliminate branches

Specialised contract: considers information from partial environment.

spec :EnvP × Contr→ Contr
c ≡ρ spec(ρ, c) for ρ ∈ EnvP

EnvP : Labelτ × Z⇀ JτK (partial)

The contract is modified, no general equivalence.
Equivalence ≡ρ (ρ ∈ EnvP) limited to ρ′ : Env that extend ρ,
i.e. ρ′ ∈ Env with ρ(l , t) = ρ′(l , t) for all(l , t) ∈ dom(ρ).
Implementation using smart constructors: earlier equivalences.

Slide 29/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contract Reduction

Transformations so far: based on equivalences and partial knowledge.
No actual contract execution (deciding, fulfilling transfers, etc.)

Contract transformation in time:
As time passes, contracts gradually evolve into empty contracts:

Advancing a contract in time.

(a major motivation for MLFi and
many in-house languages).

Semantic model: Contract reduction with associated transfers
Assumes given (complete) environment and causal contract
Proved sound and adequate with these assumptions

Slide 30/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Reduction Semantics

c T0=⇒ρ c ′

JcKρ̂ = T0 T1 T2 T3 T4 T5 . . .

Jc ′Kρ̂ = T1 T2 T3 T4 T5 T6 . . .

time0 1 2 3 4 5 6

c T0=⇒ρ̂ c1
T1=⇒ρ̂ c2

T2=⇒ρ̂ c3
T3=⇒ρ̂ c4

T4=⇒ρ̂ c5
T5=⇒ρ̂ . . .

Slide 31/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 32/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Embedding in Coq, Generating Haskell

Coq formalisation
Denotational semantics is the starting point

Adequacy of reduction semantics
Type safety (well-typed causal)
Soundness & completeness of type inference
Soundness of partial evaluation & horizon inference

Extraction of executable Haskell code
efficient Haskell implementation
embedded domain-specific language for contracts
contract analyses and contract management

Slide 33/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Contracts in Haskell – Example
{−# LANGUAGE RankNTypes, RebindableSyntax #−}

module Options where
import RebindableEDSL
import Prelude hiding (ifThenElse, (»=), (»), min, max)

asian :: Contr −− asian option
asian = 90 ! if bObs (Decision X "exercise") 0

then 100 # (transfer Y X USD & (rate # transfer X Y DKK))
else zero

where rate = (acc (λr → r + rObs (FX USD DKK) 0) 30 0) / 30

chooser :: Contr −− chooser option, looks non−causal
chooser = do price ← rObs (FX DKK USD) 60

payout ← ife (bObs (Decision X "call option") 30)
(max (price − strike) 0)
(max (strike − price) 0)

60 ! (payout # transfer Y X DKK)
where strike = 6.5 −− :: Exp R

weird :: Contr −−non−causal example
weird = rObs (FX EUR USD) 1 # transfer X Y USD

−−−−−−−−−−−−−−−−−−−−− environments

env1 = mkExtEnvP [] [(Default X,n,False) | n ← [0..30]]

envUsdDkk = mkExtEnvP rates decisions
where rates = take 100 [(FX USD DKK, i, d)

| (i , d) ← zip [1..] upDown]
upDown = cycle (up ++ reverse up)
up = [6.0, 6.05 .. 7.0]
decisions = [(Decision X "exercises" , 90, True),

(Decision X "call option", 30, False)]

Slide 34/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Expression implementations in contrast

SML:

Haskell:

Coq/Haskell:

Slide 35/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Overview
1 Prelude

Sneak Preview
The Context

2 Introducing the DSL
3 Denotational Cash-Flow Semantics

Cash-Flow Semantics
Causality of Contracts
Contract Analysis

4 Contract Transformations
Contract Simplification
Contract Specialisation
Contract Reduction (+Second Semantics)

5 DSL Embedding
6 Epilogue

Slide 36/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

Summary of our Journey today

Thanks for joining me on this journey. . .

Starting from some simple coding experiments in SML
. . . with reasonably clear goals (risk managemnt, symbolic
computation),
via some embedding experiments in Haskell
. . . and gradually introducing more and more formal treatment,
(† leaving the original bank partner on the track, sorry †)
to the final result implemented in Coq:

Certified analysis and transformation
of well-typed causal contracts

(which attracted interest of research community and Lexifi)

Slide 37/37 — J.Berthold (CBA) — Yet another Contract DSL – and the story...

	Prelude
	Sneak Preview
	The Context

	Introducing the DSL
	Denotational Cash-Flow Semantics
	Cash-Flow Semantics
	Causality of Contracts
	Contract Analysis

	Contract Transformations
	Contract Simplification
	Contract Specialisation
	Contract Reduction (+Second Semantics)

	DSL Embedding
	Epilogue

