
FPGA design with CλaSH

Conrad Parker <conrad@metadecks.org>

fp-syd, February 2016

http://wiki.site.optiver.com/pages/viewpage.action?pageId=92253855
http://wiki.site.optiver.com/pages/viewpage.action?pageId=92253855
http://wiki.site.optiver.com/pages/viewpage.action?pageId=92253855

FPGA

• Essentially a bunch of logic gates and memory blocks
that can be told to connect up to be whatever digital
circuit you want it to be.

• You load a binary file onto it that describes that
configuration.

• You generate that binary file using an application like
Vivado, from source code that you wrote in a language
like VHDL.

• At this point we're back in software land – we have a
programming language and some tool that can compile
that down to a binary.

• Flash it, reboot, and you’re executing on hardware!

FPGA design with CλaSH Conrad Parker <conrad@metadecks.org>

VHDL

Unfortunately, VHDL is fairly tedious to develop:

• It is more low-level than assembly, in that you are

describing circuits of logic gates like AND and OR
and NOT and XOR, and worrying about clock timings and
which values need to be latched between stages of some
pipeline you're inventing.

• You don't necessarily have luxuries like floating point
numbers, and the tools can be flaky.

On the flip-side it is possible to create very efficient circuits:
you can optimize for space by using fewer bits, and you can
optimize for time by doing more things in parallel.

Clash

Clash is based on Haskell, with features of suitable for
hardware design such as length-typed bit vectors (the length
is part of the type declaration), primitive data flow strategies
like Mealy and Moore machines, and parallel reducers.

For example, the expression:

fold (+) vec

will construct a depth log n tree of adders, to sum the
contents of vec.

https://hackage.haskell.org/package/clash-prelude-0.10.4/docs/CLaSH-Sized-Vector.html#v:fold

Clash

• There is "poor support" for recursive functions,
meaning that the recursion depth is explicitly
limited.

• Other than that, most commonly used Haskell
features seem to be supported.

• Haskell seems well-suited to designing parallel
systems, as the language simply describes
dependencies between expressions without
specifying an explicit order of evaluation.

CRC32

In this evaluation, I implemented and tested CRC32.

• I wrote 32 lines of Haskell

• ... which included 2 one-liners to describe some input
and expected output for testing.

• From that, Clash generated 742 lines (11 files) of VHDL

• ... including 394 lines (5 files) for the test bench (which
you would normally write by hand ...)

• Vivado uses the VHDL to make a fairly simple circuit
(the elaborated design)

• ... and synthesis creates an optimal circuit layout.

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

• The test bench result, from Vivado's hardware
simulator, includes a boolean "done" signal
which switches to TRUE when the test passes.

Test data

First we generate some test data, using a known-good implementation
(the crc32() function in zlib).

We use C to print the CRC32 for each successive letter of the input string.

Running this, we get the expected output for our test data:

 $ gcc -std=c11 CRC32.c -o CRC32 -lz
$./CRC32 Optiver
3523407757, 2814004990, 3634756580, 584440114, 781824552,
1593772748, 2102791115,

http://www.zlib.net/

#include <stdio.h>
#include <zlib.h>

unsigned long generate_crc32(const unsigned char * buf,
 unsigned int len)
{
 unsigned long crc_init = crc32(0L, Z_NULL, 0);
 unsigned long crc_0 = crc32(crc_init, "\0", 1);

 return crc32(crc_0, buf, len);
}

int main (int argc, char *argv[])
{
 unsigned int len = 0;

 if (argc < 2) return 1;
 for (len=0; argv[1][len] != '\0'; len++)
 printf ("%ld, ",
 generate_crc32((const unsigned char*)argv[1], len));
 printf ("\n");

 return 0;
}

Mealy machine

crc32T :: Unsigned 32 -> Unsigned 8 -> (Unsigned 32, Unsigned 32)
crc32T prevCRC c = (prevCRC', o)
 where
 prevCRC' = crc32Step prevCRC c
 o = prevCRC

crc32 :: Signal (Unsigned 8) -> Signal (Unsigned 32)
crc32 = mealy crc32T 0

An abstraction that hardware designers use to describe a component that

has an input and output and keeps some state.

• Our crc32 function is a mealy machine with an initial state of 0.
• The transfer function crc32T updates the state (an Unsigned 32)

using an input Unsigned 8, producing a tuple of the new state and

the output (also an Unsigned 32, being the CRC up to the previous

character).

crc32Step :: Unsigned 32 -> Unsigned 8 -> Unsigned 32
crc32Step prevCRC c =
 flipAll (tblEntry `xor` (crc `shiftR` 8))
 where
 tblEntry = crc32Table (truncateB crc `xor` c)
 crc = flipAll prevCRC
 flipAll = xor 0xffffffff

The crc32Step function does the actual CRC32 calculation, being a

bunch of XORs and bit shifts.

This is directly adapted from the pure Haskell implementation
in Data.Digest.Pure.CRC32, using Clash functions like truncateB.

The target bit width of truncateB does not need to be specified, it is

inferred by the context: Here, the result of truncation has to be xor'd

with the input character c, which is an Unsigned 8, so crc gets

truncated to 8 bits.

https://hackage.haskell.org/package/digest-pure-0.0.3/docs/src/Data-Digest-Pure-CRC32.html#CRC32

Async ROM

crc32Table :: Unsigned 8 -> Unsigned 32
crc32Table = unpack . asyncRomFile d256 "crc32_table.bin"

That 8 bit value is used to index into crc32Table, which we implement as

an async ROM. Async means that you can read it without waiting a clock

cycle; ROM of course means that it's read-only, but that doesn't force the

hardware tools to actually use a dedicated ROM (or RAM) component.

The values for the ROM are read from a file, which we generate by

dumping an array from zlib as binary.

Top entity

crc32 :: Signal (Unsigned 8) -> Signal (Unsigned 32)
crc32 = mealy crc32T 0

topEntity :: Signal (Unsigned 8) -> Signal (Unsigned 32)
topEntity = crc32

The topEntity is like a main function. The types of this are Signals,

which is a wrapper that Clash uses to describe synchronous (clocked)
circuits. You might notice that the crc32T function that we use to

construct a mealy machine does not use Signals, it is just a pure

function. The compiler can safely compose pure functions without

worrying about clocking. Clash uses this to allow things like

composing mealy machines.

Testbench

testInput :: Signal (Unsigned 8)
testInput = stimuliGenerator $(v [0 :: Unsigned 8, 79,
112,116,105,118,101,114])

expectedOutput :: Signal (Unsigned 32) -> Signal Bool
expectedOutput = outputVerifier $(v [0 :: Unsigned 32,
3523407757, 2814004990, 3634756580, 584440114, 781824552,
1593772748, 2102791115])

Writing a test is as simple as providing some testInput (here, the word

"Optiver" in ASCII), and the expectedOutput.

This will eventually be used to generate a circuit that we can use in hardware

simulation, but first …

Testing in the Clash REPL

*CRC32> sampleN 9 $ expectedOutput (topEntity testInput)
[False,False,False,False,False,False,False,False,
cycle(system1000): 8, outputVerifier
expected value: 2102791115, not equal to actual value:
1623372462
True]

 Regarding the "expected value not equal to actual value" error, the Clash tutorial says:

“We can see that for the first N samples, everything is working as expected, after which
warnings are being reported. The reason is that stimuliGenerator will keep on

producing the last sample, ... while the outputVerifier will keep on expecting the last

sample, In the VHDL testbench these errors won't show, as the the global clock will be

stopped after N ticks.”

We can do something that we can't normally do with VHDL: we can
test it purely in software! Loading it into clash --interactive:

https://hackage.haskell.org/package/clash-prelude-0.10.4/docs/CLaSH-Prelude-Testbench.html#v:stimuliGenerator
https://hackage.haskell.org/package/clash-prelude-0.10.4/docs/CLaSH-Prelude-Testbench.html#v:outputVerifier

Generating VHDL

*CRC32> :vhdl
[1 of 1] Compiling CRC32 (CRC32.hs, CRC32.o)
Loading dependencies took 0.053376s
Applied 143 transformations
Normalisation took 0.145971s
Netlist generation took 0.013298s
Applied 65 transformations
Applied 111 transformations
Testbench generation took 0.505447s
Total compilation took 0.752854s

Ok, finally it's time to generate some VHDL:

Simulation

• The done signal indicates the test passed, finished that it
finished.

• system1000 is a simulated 1000ns clock,
and system1000_rstn is a reset line.

• eta_i1[7:0] is the 8 bit input, which we display as ASCII
("Optiver"), and topLet_0[31:0] is the CRC32 output.

Elaborated design

• The elaborated design is the logical design
that Vivado generates after interpreting the
VHDL. We can see that it includes a ROM in
the middle, a few XORs and a right shift.

Synthesis

Finally, we can synthesize an actual design
using gates.

• 8 bits of input on the left, and 32 bits of
output on the right

• In the middle is a whole heap of lookup
tables and flip-flops.

• What happened to the ROM?

Although the FPGA does contain some "block RAM" which could be used to
store the crc table, for this little circuit Vivado actually found it more
efficient/better to implement the lookup as a collection of one-bit lookup
tables of different sizes (variously 3, 4, 5, or 6 inputs).

What happened to the ROM?

Good luck working backwards from the synthesized design to the logical
circuit!

Conclusion

The generated VHDL is quite readable, and the source
Haskell is far easier to reason about than VHDL.

Agile hardware development:
• The automated testbench generation is useful, as that

part of VHDL design is often quite tedious
• You can run tests in the software interpreter, even

before generating VHDL

The world’s finest imperative programming language is
also useful for implementing in hardware.

FPGA design with CλaSH Conrad Parker <conrad@metadecks.org>

