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Introduction

This is a talk in two parts:

1. First I’ll introduce dynamic programming and a “framework” for
implementing DP algorithms in Haskell using the vector library.

2. Second I’ll describe two algorithms and their implementation in this
framework.

https://en.wikipedia.org/wiki/Dynamic_programming
https://www.haskell.org/
https://hackage.haskell.org/package/vector


Dynamic Programming



Dynamic programming

Dynamic programming is an approach to solving problems which exhibit
two properties:

I Optimal substructure - an optimal solution can be found efficiently
given optimal solutions to its sub-problems.

I Overlapping sub-problems - problems are divided into sub-problems
which are used several times in the calculation of a solution to the
overall problem.

In practice this means:

I Solving a single “step” is efficient; and
I It’s worth keeping the solution to each step, because we’ll be reusing

the answers a lot.

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Optimal_substructure
https://en.wikipedia.org/wiki/Overlapping_subproblems


Dynamic programming

Generally dynamic programming algorithms share characteristics like these:

1. Sub-problems are solved “smallest” first.
2. The solutions are kept in a tableau of some sort (dimensions and

shape depending on the problem).
3. We work through the problems and eventually reach the end, where

we have an optimal solution to the overall problem.

In a handwave-y sense:

1. We know we’ll need the solution for every sub-problem;
2. We know we’ll need them many times (so it’s worth keeping).



Other approaches

Dynamic programming can be contrasted with other approaches:

I Divide and conquer algorithms have sub-problems which do not
necessarily overlap.

I Greedy algorithms work top-down selecting locally best sub-problems;
so the solutions aren’t necessarily optimal.

I Memoisation algorithms maintain a cache past results so they can
short-circuit when the same problem is solved in future.



Actually programming

Dynamic programming algorithms are often presented as a series of loops
which gradually fill in the cells of a tableau. Generally presented pretty
imperatively:

I for loops
I mutable state



Actually programming

MATRIX-CHAIN-ORDER(p)
n <- length[p] - 1
for i <- 1 to n do

m[i,i] <- 0
for l <- 2 to n do

for i <- 1 to n - l + 1 do
j <- i + l - 1
m[i,j] <- infinity
for k <- i to j - 1 do

q <- m[i,k] + m[k+1,j] + p[i-1] * p[k] * p[j]
if q < m[i,j] do

m[i,j] <- q
s[i,j] <- k

return m, s

(From CLRS 2nd ed; p. 336)



Not actually imperative

The key observation is that all these algorithms start with an empty
tableau and gradually fill it in as they solve progressively larger
sub-problems.

The imperativeness is the only way they know how to do this.

Poor them. :-(



A better way?

We need to tackle the sub-problems smallest to largest (p < q when the
solution of q depends on the solution of p); and keep them so that we can
find a particular solution when we need it.

1. Implement a bijection between the ordering and the parameters of a
sub-problem (i.e. its coordinates in the tableau) ix : problem→ N

2. Implement the step function to solve a single sub-problem (“given
optimal solutions to the sub-problems. . . ”).

3. Glue them together with a framework to do the looping, construct the
tableau, extract the answer, etc.

(The tableaux may be awkward shapes and we’d like to avoid wasting, e.g.,
O( n

2 ) space; making ix nice will be key.)



Framework

1. Implement a pair of functions ps :: Int → problem and
ix :: problem→ Int (or an Iso when I can be bothered changing the
code).

2. Implement a function to calculate a single sub-problem
step :: problem→ (problem→ solution)→ solution.

3. Glue these together by using Data.Vector.constructN with some
partial evaluation and closures and such.



Implementation

type Size = Int
type Index = Size

dp :: (problem -> Index)
-> (Index -> problem)
-> (problem -> (problem -> solution) -> solution)
-> Size
-> solution

dp p2ix ix2p step n = V.last (V.constructN n solve)
where

solve :: Vector solution -> solution
solve subs =

let p = ix2p (V.length subs)
get p = subs V.! (p2ix p)

in step p get



Example problems



Examples

There are many dynamic programming problems, I’ll be using the following
as examples:

1. Matrix-chain multiplication - given a sequence of compatible matrices,
find the optimal order in which to associate the multiplications.

2. String edit distance - given two strings, find the lowest-cost sequence
of operations to change the first into the second.

I Both of these algorithms have nice, predictable and complete
tableaux.

I Other algorithms make concessions to get a lower space bounds, but
I’m not interested in these.



Matrix-chain multiplication



Matrix-chain multiplication

Matrix multiplication is a pretty big deal. Assuming you have two matrices
with dimensions A1 : m× n and A2 : n× o then multiplying them will take
O(m × n × o) scalar operations (using the naive algorithm).

Matrix multiplication is associative (but not commutative) so we can
“bracket” a chain of n > 2 matrices however we like. The matrix-chain
multiplication problem is to choose the best (i.e. least cost) way to bracket
a matrix multiplication chain.

First, let’s see why we need an algorithm?



Example: Multiply three matrices

A1 : 10× 100
A2 : 100× 5
A3 : 5× 50

There are two ways we can evaluate the chain A1A2A3: (A1A2)A3 or
A1(A2A3).

(A1A2)A3 = (10× 100× 5) + (10× 5× 50) = 7500
A1(A2A3) = (10× 100× 50) + (100× 5× 50) = 75000

We’ve only had to make one choice and we’ve already done, potentially, an
order of magnitude too much work!



Matrix-chain multiplication

I Suppose we have a chain AiAi+1Ai+2...Ai+n of n matrices we wish to
multiply.

I Any solution splits the chain in two – a left side and a right side –
which must each be multiplied out before multiplying the results
together.

I We are free to split at any point j in the chain 1 < j < n.
I The left and right sides are both sub-problems.



Matrix-chain multiplication

1. For all possible splitting points s:
1.1 Calculate the cost of the right sub-problem; and
1.2 Calculate the cost of the left sub-problem.

2. Solve the problem by choosing the splitting point s to minimise:
2.1 The cost of the left sub-problem Ai ..Ai+s ; and
2.2 The cost of the right sub-problem Ai+s+1..Ai+n; and
2.3 The cost of multiplying the solutions of the two sub-problems

together.

In (1) we’re calculating the solutions to all sub-problems and in (2) we’re
choosing and combining the optimal sub-problems into an optimal solution.

A recursive implementation results in an enormous amount of repeated
work, so we’ll use a dynamic algorithm.



Matrix-chain multiplication
The key is a tableau which holds the intermediate sub-problems:

Figure 1: Empty MCM tableau



Matrix-chain multiplication

Figure 2: Sub-problem 3..5 considers splits at 3 and 4



Matrix-chain multiplication

Figure 3: Sub-problem 2..5 considers splits at 2, 3, and 4



Matrix-chain multiplication

I A solution (Int, (Int, Int), Vector Int) includes the number
of scalar multiplications, dimensions of the resulting matrix, and
splitting points.

I For a chain of n matrices the vector is n∗(n+1)
2 long (this is the nth

triangular number).
I We map between the tableau and the vector a little trickily:

ix :: Size -> Problem -> Index
ix n (i,j) =

let x = n - j + i + 1
in i + (n * (n-1) `div` 2) - ((x-1) * x `div` 2)

param :: Size -> Index -> Problem
param n x = -- (ix n (i,j) = x), solve for (i,j)



Matrix-chain multiplication

solve ms (i,j) get
-- Sub-problem of length = 1.
| i == j = (0, ms V.! i, mempty)
-- Sub-problem of length > 1; check the possible splits.
| otherwise = minimumBy (compare `on` fsst) $

map subproblem [i..j-1]
where

subproblem s =
let (lc, (lx,ly), ls) = get (i,s)

(rc, ( _,ry), rs) = get (s+1,j)
in ( lc + rc + (lx * ly * ry)

, (lx, ry)
, V.singleton s <> ls <> rs
)



Matrix-chain multiplication

-- | Solve a matrix-chain multiplication problem.
mcm :: Vector (Int,Int) -> (Int, (Int,Int), Vector Int)
mcm ms = let n = V.length ms

in dp (ix n) (param n) (solve ms) (triangularNumber n)
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String edit distance

Given two strings, find the optimal cost (and/or the sequence of
operations) to transform the first string into the latter.

We aren’t committed to any particular set of operations but we’ll use:

I Insert: cost(cat → chat) = 1
I Delete: cost(cat → ca) = 1
I Substitute: cost(cat → sat) = 1



String edit distance

The tableau for a string edit distance problem is a little simpler, it’s just
an n ×m matrix for “from” and “to” strings of n and m symbols:

ε s a t u r d a y
ε
c
a
t

(Well actually, it’s (n + 1)× (m + 1).)



String edit distance

The sub-problem structure here comes from the prefix structure of the
strings themselves.

Given some optimal solution for cost(s → t), we can solve:

I Extend: cost(s a c → t a c) = cost(s → t)
I Delete: cost(s a c → t) = cost(s → t) + delete
I Insert: cost(s → t a c) = cost(s → t) + insert
I Substitute: cost(s a c → t a d) = cost(s → t) + subst



String edit distance

The trivial cases in string edit distance are a tiny bit less trivial than for
MCM:

ε s a t u r d a y
ε 0 1 2 3 4 5 6 7 8
c 1
a 2
t 3



String edit distance

Filling in the rest of the tableau is pretty straightforward:

if s[x] == t[y]
then

m[x,y] <- m[x-1,y-1] -- Nop: ↖ + 0
else

m[x,y] <- min
{ m[x-1,y ] + 1 -- Ins: ← + 1
, m[x ,y-1] + 1 -- Del: ↑ + 1
, m[x-1,y-1] + 1 -- Sub: ↖ + 1
}



String edit distance

ε s a t u r d a y
ε 0 1 2 3 4 5 6 7 8
c 1 1 2 3 4 5 6 7 8
a 2 2 ?
t 3

s[y ] = t[x ] so no edit operation required, this is an extension:
m[x , y ]← m[x − 1, y − 1].



String edit distance

ε s a t u r d a y
ε 0 1 2 3 4 5 6 7 8
c 1 1 2 3 4 5 6 7 8
a 2 2 1 ?
t 3

s[y ] 6= t[x ] so we check the cases:

I Insert “t”: m[x − 1, y ] + 1
I Delete “a”: m[x , y − 1] + 1
I Replace “a” with “t”: m[x − 1, y − 1] + 1

We choose the least: m[x , y ]← m[x − 1, y ] + 1.



String edit distance

We can the cost from the cell m[len(t), len(s)] or follow the path back
through the tableau to determine an edit script.

ε s a t u r d a y
ε 0 1 2 3 4 5 6 7 8
c 1 1 2 3 4 5 6 7 8
a 2 2 1 2 3 4 5 6 7
t 3 3 2 1 2 3 4 5 6

This is usually called Wagner-Fischer algorithm and about a dozen other
things.

https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm


Wagner-Fischer algorithm

I We’ll find (Int, [Op]) solutions which include the lowest cost and
the edit script for the optimal solution.

I The vector is n×m long, each value depends only on cells before it in
the ordering.

I We map the n ×m tableau to a Vector in the obvious way:

ix :: Size -> Problem -> Index
ix n (x,y) = (x * n) + y

param :: Size -> Index -> Problem
param n i = i `quotRem` n



Wagner-Fischer algorithm

I And solving sub-problems is now just an analysis of cases:

solve ( 0, 0) _ = (0, mempty)
solve ( 0, pred -> y) g = op del (s V.! y) ' ' $ g (0,y)
solve (pred -> x, 0) g = op ins ' ' (t V.! x) $ g (x,0)
solve (pred -> x, pred -> y) get =

let {s' = s V.! x; t' = t V.! y}
in if s' == t' then (Nothing:) <$> get (x, y)

else minimumBy (compare `on` fst)
[ op del s' t' $ get (1+x, y)
, op ins s' t' $ get (x, 1+y)
, op sub s' t' $ get (x,y)
]



Wagner-Fischer algorithm

I Gluing these bits together we get:

editDistance :: Vector Char -> Vector Char -> Solution
editDistance s t = (reverse . catMaybes) <$>

let {m = V.length s; n = V.length t}
in dp (ix n) (param n) solve (m * n)



Conclusion



Conclusions

I Dynamic programming is a great and fits naturally into standard
libraries in the Haskell ecosystem.

I The mutation used in the descriptions of many algorithms is often
incidental; you can probably find a way to remove it or hide it behind
an API.

I Finding a suitable isomorphism Index ↔ problem which orders
sub-problems appropriately is the key; if you care about complexity
analysis of the whole algorithm this should probably be O(1).

I (Finding an appropriate O(1) bijections between indexes in a
funny-shaped matrix and N can be tricky, especially if you can’t
remember high-school algebra.)
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