
Pure consensus in a
world full of failure

Conrad Parker
fp-syd:20150325

Wither consensus?

Failures

• Non-Byzantine failures

• Byzantine failures

• Organizational failures

Not just sockets

• RobustIRC

• Unroutable networks

• Layer 3: BGP opaque data payloads

Not just storage

• Probabilistically Bounded Staleness

• Instrumentation

• Monte Carlo simulation

Abstractions

• Protocol: client/server and node/node RPC

• Storage: persistent logs

• Network: communications channel

A protocol abstraction

class Protocol p where!

 type Request p :: *!

 type Response p :: *!

 step :: p -> Request p!

 -> (p, Maybe (Response p))

A generic protocol server
serveOn :: (Protocol p, Serialize (Request p), Serialize (Response p))!

 => PortID -> p -> IO ()!

serveOn port p0 = do!

 s <- listenOn port!

 forever $ do!

 (h, addr) <- S.accept s!

 stream <- mkSocketStream h!

 forkIO (loop stream p0 `finally` S.sClose h)!

 where!

 loop stream p = do!

 cmd <- Stream.runGet stream get!

 let (p', m'rsp) = step p cmd!

 case m'rsp of!

 Just rsp -> Stream.runPut stream $ put rsp!

 Nothing -> return ()!

 loop stream p'!

A store abstraction
• Log of state machine changes on each node

class Store s where!

 type Value s :: *!

 — | Query the value at a given index!

 query :: Index -> s -> m (Maybe (Value s, Term))!

 — | Store a value at a given index!

 store :: (Foldable t, Monad m) !

 => Int -> t (Value s) -> Term -> s -> m s!

 — | Mark values up to the given index as committed!

 commit :: Monad m => Index -> s -> m s!

 — | Delete a given entry and all that follow it!

 truncate :: Monad m => Index -> s -> m s

A simple client-server
• Client RPC: get, set values

• Sleep, Debug (dump state etc.)

step t cmd = case cmd of!

 CmdSet k v ->!

 let s' = store [v] (Term 0) (ts t) in!

 (t{ts=s'}, Just $ RspSetOK k v)!

 CmdGet k -> let rsp = case query 0 (ts t) of!

 Just (v, _) -> RspGetOK k v!

 Nothing -> RspGetFail k!

 in (t, Just $ rsp)!

 CmdSleep n -> (t, Nothing)!

A replicated server

• Introduce a new Node communication

 NodeSet k v!

• Mirror client Set commands

Raft nodes

• Client talks with (who it thinks is) leader node

• Non-leader responds with redirect message

• Leader translates into Raft RPC

Node state machine
• Nodes react based on:

• Client requests (Get, Set)

• Raft RPC from other nodes (AppendEntries, RequestVote)

• Timeouts

• Reactions include

• Sending out new Raft RPC requests

• Sending Client and Raft RPC responses

• Interacting with Store API

AppendEntries
 step receiver (AE AppendEntries{..})!

 -- Reply False if term < currentTerm!

 | aeTerm < term = (receiver, Just . AER$ AppendEntriesResponse term False)!

 | otherwise = do!

 -- Reply False if log doesn't contain an entry at prevLogIndex!

 -- whose term matches prevLogTerm!

 t <- snd <$> Consensus.query prevLogIndex s!

 if (t /= Just prevLogTerm)!

 then return (receiver, AER$ AppendEntriesResponse term False)!

 else do!

 -- If an existing entry conflicts with a new one (same index but!

 -- different terms), delete the existing entry and all that follow it.!

 when (t /= aeTerm)!

 truncate prevLogIndex s!

 -- Append any new entries not already in the log!

 store ix entries aeTerm s!

 return (receiver, Just . AER$ AppendEntriesResponse aeTerm True)!

 where!

RequestVote

 -- Follower receiving RequestVote!

 step receiver@(RaftFollower p@RaftPersistentState{..} vol) (RV RequestVote{..})!

 -- Reply False if term < currentTerm!

 | rvTerm < currentTerm!

 = (receiver, Just. RVR$ RequestVoteResponse currentTerm False)!

!
 -- If votedFor is null or candidateId, and candidate's log is at!

 -- least as up-to-date as receiver's log, grant vote!

 | (votedFor == Nothing || votedFor == Just candidateId)!

 && lastLogTerm <= currentTerm!

 = (RaftFollower granted vol, Just . RVR$ RequestVoteResponse rvTerm True)!

 where!

 granted = p { votedFor = Just candidateId }!

!

Next steps

• Protocol step function in a restricted monad that
can only interact with storage and initiate timeouts

• Replay / instrumentation

• Membership changes

• http://github.com/kfish/raft

http://github.com/kfish/raft

