
Your Web Service as a Type

(Typing REST APIs with Servant)

1 / 39

I am

I Christian Marie (pingu on IRC).

I Employed by Anchor Systems, a managed cloud hosting provider.
I Recently, a developer of Servant.

2 / 39

I am

I Christian Marie (pingu on IRC).
I Employed by Anchor Systems, a managed cloud hosting provider.

I Recently, a developer of Servant.

2 / 39

I am

I Christian Marie (pingu on IRC).
I Employed by Anchor Systems, a managed cloud hosting provider.
I Recently, a developer of Servant.

2 / 39

Every time you try to webservice

Your REST API decides to. . .

I Break in subtle ways

I Mix boilerplate with important business logic
I Become infinitely complex
I Become partially and/or inconsistently documented

3 / 39

Every time you try to webservice

Your REST API decides to. . .

I Break in subtle ways
I Mix boilerplate with important business logic

I Become infinitely complex
I Become partially and/or inconsistently documented

3 / 39

Every time you try to webservice

Your REST API decides to. . .

I Break in subtle ways
I Mix boilerplate with important business logic
I Become infinitely complex

I Become partially and/or inconsistently documented

3 / 39

Every time you try to webservice

Your REST API decides to. . .

I Break in subtle ways
I Mix boilerplate with important business logic
I Become infinitely complex
I Become partially and/or inconsistently documented

3 / 39

Servant - type combinators for webservice APIs

I A collection of libraries built around the concept of typed APIs.

I Six developers
I At least two commercial users (Zalora, Anchor)
I About to hit a 0.3 release with some major improvements.

4 / 39

Servant - type combinators for webservice APIs

I A collection of libraries built around the concept of typed APIs.
I Six developers

I At least two commercial users (Zalora, Anchor)
I About to hit a 0.3 release with some major improvements.

4 / 39

Servant - type combinators for webservice APIs

I A collection of libraries built around the concept of typed APIs.
I Six developers
I At least two commercial users (Zalora, Anchor)

I About to hit a 0.3 release with some major improvements.

4 / 39

Servant - type combinators for webservice APIs

I A collection of libraries built around the concept of typed APIs.
I Six developers
I At least two commercial users (Zalora, Anchor)
I About to hit a 0.3 release with some major improvements.

4 / 39

Your API wants types

REST problems
I Break in subtle ways

I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!

I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!

I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!

I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!

I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!
I Explode at compile time

I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!
I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!
I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

Your API wants types

REST problems
I Break in subtle ways
I Boilerplate gets mixed with
important business logic

I Complexity becomes nightmare to
maintain

I Becomes partially and/or
inconsistently documented

Types can fix that!
I Explode at compile time
I Make generic programming an
option

I Provide a framework for
complexity

I Provide documentation, with
100% coverage

5 / 39

How do you even API as type?

Figure 1: It is okay. I might know how to do this. 6 / 39

Thought experiment: Your API as a tree.

I Leaves are endpoints (GET, POST, etc)

I Internal nodes “modify” the endpoint that they lead to.

7 / 39

Thought experiment: Your API as a tree.

I Leaves are endpoints (GET, POST, etc)
I Internal nodes “modify” the endpoint that they lead to.

7 / 39

APIs have shapes

Figure 2: Your API as a tree 8 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes

I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2

I For branching
I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes
I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2

I For branching
I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes
I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2

I For branching
I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes
I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2
I For branching

I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes
I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2
I For branching
I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

Types have shapes (type operators)

head :> tail
I For joining nodes
I Constructor for a type level
non-empty list

I Not directly inhabitable

branch1 :<|> branch2
I For branching
I Constructor for alternatives
(disjunction)

I Inhabitable via :<|>

data (path :: k) :> a
infixr 9 :>

data a :<|> b = a :<|> b
infixr 8 :<|>

9 / 39

APIs have shapes

Figure 3: Your API as a tree 10 / 39

Shape as a type!

type MakeCard =
"card"
:> QueryFlag "loud"
:> ReqBody '[FormUrlEncoded, JSON] Name
:> Post '[JSON] PersonalisedCard

type RandomInt =
"random_number" :> Get '[JSON] Int

type CardAPI = "v1.0.0" :> (MakeCard :<|> RandomInt)

11 / 39

How would a typed API even work?

Before we can type the APIs, I have to explain some “fundamentals”:

I DataKinds

I PolyKinds
I Data.Proxy
I GHC.TypeLits
I TypeFamilies

12 / 39

How would a typed API even work?

Before we can type the APIs, I have to explain some “fundamentals”:

I DataKinds
I PolyKinds

I Data.Proxy
I GHC.TypeLits
I TypeFamilies

12 / 39

How would a typed API even work?

Before we can type the APIs, I have to explain some “fundamentals”:

I DataKinds
I PolyKinds
I Data.Proxy

I GHC.TypeLits
I TypeFamilies

12 / 39

How would a typed API even work?

Before we can type the APIs, I have to explain some “fundamentals”:

I DataKinds
I PolyKinds
I Data.Proxy
I GHC.TypeLits

I TypeFamilies

12 / 39

How would a typed API even work?

Before we can type the APIs, I have to explain some “fundamentals”:

I DataKinds
I PolyKinds
I Data.Proxy
I GHC.TypeLits
I TypeFamilies

12 / 39

DataKinds, PolyKinds, Proxy & TypeLits

import Data.Proxy
import GHC.TypeLits

-- | A concrete, poly-kinded proxy type
data Proxy a = Proxy

stringProxy :: Proxy "I AM A TYPE-LEVEL STRING!"
stringProxy = Proxy

listProxy :: Proxy '[Int, Bool, String]
listProxy = Proxy

symbolVal :: KnownSymbol str => Proxy str -> String

13 / 39

TypeFamilies

I Just functions at the type level

I We will use them in the associated form (appearing in a type class).
I These are called “associated type synonyms”.
I They are a specific case of top-level “open” or “closed” type families, but
give better errors and are clearer in their intentions.

14 / 39

TypeFamilies

I Just functions at the type level
I We will use them in the associated form (appearing in a type class).

I These are called “associated type synonyms”.
I They are a specific case of top-level “open” or “closed” type families, but
give better errors and are clearer in their intentions.

14 / 39

TypeFamilies

I Just functions at the type level
I We will use them in the associated form (appearing in a type class).
I These are called “associated type synonyms”.

I They are a specific case of top-level “open” or “closed” type families, but
give better errors and are clearer in their intentions.

14 / 39

TypeFamilies

I Just functions at the type level
I We will use them in the associated form (appearing in a type class).
I These are called “associated type synonyms”.
I They are a specific case of top-level “open” or “closed” type families, but
give better errors and are clearer in their intentions.

14 / 39

Silly type family example

class Frobable a where
type FrobingResult a -- Associated type synonym

frob :: Proxy a -> FrobingResult a

data MeaningOfLife

instance Frobable MeaningOfLife where
type FrobResult MeaningOfLife = Int

frob :: Proxy MeaningOfLife -> FrobResult MeaningOfLife
frob _ = 42

15 / 39

Silly type family example

data EatsBools

widget :: Proxy (EatsBools :> MeaningOfLife)
widget = Proxy

instance Frobable rem => Frobable (EatsBools :> rem) where
type FrobResult (EatsBools :> rem) =

Bool -> Maybe (FrobResult rem)

frob :: Proxy (EatsBools :> rem)
-> FrobResult (EatsBools :> rem)

frob _ True = Just $ frob (Proxy :: Proxy rem)
frob _ False = Nothing

16 / 39

The results

> :t frob
frob :: Frobable a => Proxy a -> FrobResult a

> :t widget
widget :: Proxy (EatsBools :> MeaningOfLife)

> :t frob widget
frob widget :: FrobResult (EatsBools :> MeaningOfLife)

> let x = frob widget
> :t x

x :: Bool -> Maybe Int

17 / 39

The results

> :t frob
frob :: Frobable a => Proxy a -> FrobResult a

> :t widget
widget :: Proxy (EatsBools :> MeaningOfLife)

> :t frob widget
frob widget :: FrobResult (EatsBools :> MeaningOfLife)

> let x = frob widget
> :t x

x :: Bool -> Maybe Int

17 / 39

Recap

I Your API has a tree-like shape.

I The tree-like shape of your API can be expressed with a type.
I Servant defines some type operators: (:>) and (:<|>).
I DataKinds, TypeLits and Proxies help us write this type.
I Type families allow us to take an API type and manipulate it.

18 / 39

Recap

I Your API has a tree-like shape.
I The tree-like shape of your API can be expressed with a type.

I Servant defines some type operators: (:>) and (:<|>).
I DataKinds, TypeLits and Proxies help us write this type.
I Type families allow us to take an API type and manipulate it.

18 / 39

Recap

I Your API has a tree-like shape.
I The tree-like shape of your API can be expressed with a type.
I Servant defines some type operators: (:>) and (:<|>).

I DataKinds, TypeLits and Proxies help us write this type.
I Type families allow us to take an API type and manipulate it.

18 / 39

Recap

I Your API has a tree-like shape.
I The tree-like shape of your API can be expressed with a type.
I Servant defines some type operators: (:>) and (:<|>).
I DataKinds, TypeLits and Proxies help us write this type.

I Type families allow us to take an API type and manipulate it.

18 / 39

Recap

I Your API has a tree-like shape.
I The tree-like shape of your API can be expressed with a type.
I Servant defines some type operators: (:>) and (:<|>).
I DataKinds, TypeLits and Proxies help us write this type.
I Type families allow us to take an API type and manipulate it.

18 / 39

Types for clarity

Let’s take what we’ve learned and see if we can express our business logic by
itself, free of boilerplate.

19 / 39

HasServer, a dumping ground for boilerplate
class HasServer layout where

type Server layout :: *
route :: Proxy layout

-> Server layout
-> RoutingApplication

instance HasServer Delete where
type Server Delete = EitherT (Int, String) IO ()

route Proxy action request respond
| pathIsEmpty request
&& requestMethod request == methodDelete = do

e <- runEitherT action
. . .

20 / 39

Distribute your alternatives
instance (HasServer a, HasServer b) =>

HasServer (a :<|> b) where

type Server (a :<|> b) = Server a :<|> Server b

route Proxy (a :<|> b) request respond =
route pa a request $ \ mResponse ->

if isMismatch mResponse
then route pb b request $ \mResponse' ->

respond (mResponse <> mResponse')
else respond mResponse

where pa = Proxy :: Proxy a
pb = Proxy :: Proxy b

21 / 39

Unravelling the type one step at a time
instance (KnownSymbol sym, FromText a, HasServer sub)

=> HasServer (QueryParam sym a :> sub) where

type Server (QueryParam sym a :> sub) = Maybe a -> Server sub

route Proxy subserver req respond = do
let query = parseQueryText $ rawQueryString req

paramname = cs $ symbolVal ps
param = fmap fromText

. join $ lookup paramname query
route (Proxy :: Proxy sub)

(subserver param)
request respond
. . .

22 / 39

But how does the content-typing work?

type MakeCard =
"card"
:> QueryFlag "loud"
:> ReqBody '[FormUrlEncoded, JSON] Name
:> Post '[JSON] PersonalisedCard

type RandomInt =
"random_number" :> Get '[JSON] Int

type CardAPI = "v1.0.0" :> (MakeCard :<|> RandomInt)

23 / 39

We seperate handling of content types

instance ToFormUrlEncoded Name where
toFormUrlEncoded (Name full) =

[("full_name", full)]

instance FromFormUrlEncoded Name where
fromFormUrlEncoded xs =

Name <$> note "specify full_name" (lookup "full_name" xs)

instance FromJSON PersonalisedCard
instance ToJSON PersonalisedCard

. . .

24 / 39

Business logic is now isolated

server :: Server CardAPI
server = makeCard :<|> randomNumber

makeCard :: Monad m
=> Bool -> Name -> m PersonalisedCard

makeCard loud (Name full_name) =
return . PersonalisedCard $

if loud
then "HELLO " <> toUpper full_name <> "!!1"
else "Hello " <> full_name <> "."

randomNumber :: Monad m => m Int
randomNumber = return 4

25 / 39

API type to documentation.

docs :: HasDocs layout => Proxy layout -> API

instance ToParam (QueryFlag "loud") where
toParam _ =

DocQueryParam "loud"
["true", "false"]
"Get the personalised card loudly.\
\ Default is false."
Flag

26 / 39

Type errors will make you define instances

instance ToSample Int where
toSample = Just 4 -- Fair dice roll

instance ToSample Name where
toSample = Just $ Name "Hubert Cumberdale"

instance ToSample PersonalisedCard where
toSamples =

[("If you use ?loud",
, PersonalisedCard "HELLO, HUBERT CUMBERDALE!!1")

, ("If you do not use ?loud"
, PersonalisedCard "Hello, Hubert Cumberdale.")

]
27 / 39

Now you can markdown the things

docs :: HasDocs layout => Proxy layout -> API

markdown :: API -> String

28 / 39

Converted to HTML

Figure 4: Auto-generated docs 29 / 39

Converted to HTML

Figure 5: Auto-generated docs (zoomed to request) 30 / 39

Clients for free (tackling complexity)

Consider an unversioned API that has:

I Three breaking changes

I Six users

How many changes must you make to fix all of the things?

31 / 39

Clients for free (tackling complexity)

Consider an unversioned API that has:

I Three breaking changes
I Six users

How many changes must you make to fix all of the things?

31 / 39

Clients for free (tackling complexity)

Figure 6: Complexity to maintain 32 / 39

Writing clients, the lazy way

createCard
:: Bool
-> Name
-> BaseUrl
-> EitherT ServantError IO PersonalisedCard

getDice
:: BaseUrl
-> EitherT ServantError IO [Int]

(createCard :<|> getDice) = client cardApi

33 / 39

How could such a magical unicorn exist?

client
:: HasClient layout => Proxy layout -> Client layout

34 / 39

The magic: distribute (:<|>)

class HasClient layout where
type Client layout :: *
clientWithRoute

:: Proxy layout -> Req -> Client layout

instance (HasClient a, HasClient b)
=> HasClient (a :<|> b) where

type Client (a :<|> b) = Client a :<|> Client b
clientWithRoute Proxy req =

clientWithRoute (Proxy :: Proxy a) req :<|>
clientWithRoute (Proxy :: Proxy b) req

35 / 39

Clients for free!

createCard
:: Bool
-> Name
-> BaseUrl
-> EitherT ServantError IO PersonalisedCard

getDice
:: BaseUrl
-> EitherT ServantError IO [Int]

(createCard :<|> getDice) = client cardApi

36 / 39

Type safe URLs

safeLink
:: forall endpoint api. (IsElem endpoint api

, HasLink endpoint)
=> Proxy api
-> Proxy endpoint
-> MkLink endpoint

37 / 39

With input!

let nums = Proxy :: Proxy ("v1.0.0" :> RandomInts)
print $ safeLink cardApi nums

>> v1.0.0/random_numbers

let make_card = Proxy :: Proxy ("v1.0.0" :> MakeCard)
let f :: Bool -> URI = safeLink cardApi make_card
traverse_ print [f True, f False]

>> v1.0.0/card?loud
>> v1.0.0/card

38 / 39

With input!

let nums = Proxy :: Proxy ("v1.0.0" :> RandomInts)
print $ safeLink cardApi nums

>> v1.0.0/random_numbers

let make_card = Proxy :: Proxy ("v1.0.0" :> MakeCard)
let f :: Bool -> URI = safeLink cardApi make_card
traverse_ print [f True, f False]

>> v1.0.0/card?loud
>> v1.0.0/card

38 / 39

With input!

let nums = Proxy :: Proxy ("v1.0.0" :> RandomInts)
print $ safeLink cardApi nums

>> v1.0.0/random_numbers

let make_card = Proxy :: Proxy ("v1.0.0" :> MakeCard)
let f :: Bool -> URI = safeLink cardApi make_card
traverse_ print [f True, f False]

>> v1.0.0/card?loud
>> v1.0.0/card

38 / 39

With input!

let nums = Proxy :: Proxy ("v1.0.0" :> RandomInts)
print $ safeLink cardApi nums

>> v1.0.0/random_numbers

let make_card = Proxy :: Proxy ("v1.0.0" :> MakeCard)
let f :: Bool -> URI = safeLink cardApi make_card
traverse_ print [f True, f False]

>> v1.0.0/card?loud
>> v1.0.0/card

38 / 39

Conclusion

I Types and webservices can be friends

I By defining your API as a type, you can get for free:

I Server boilerplate
I Documentation
I Clients (Haskell, jquery, PureScript)
I Safe links

39 / 39

Conclusion

I Types and webservices can be friends
I By defining your API as a type, you can get for free:

I Server boilerplate
I Documentation
I Clients (Haskell, jquery, PureScript)
I Safe links

39 / 39

Conclusion

I Types and webservices can be friends
I By defining your API as a type, you can get for free:

I Server boilerplate

I Documentation
I Clients (Haskell, jquery, PureScript)
I Safe links

39 / 39

Conclusion

I Types and webservices can be friends
I By defining your API as a type, you can get for free:

I Server boilerplate
I Documentation

I Clients (Haskell, jquery, PureScript)
I Safe links

39 / 39

Conclusion

I Types and webservices can be friends
I By defining your API as a type, you can get for free:

I Server boilerplate
I Documentation
I Clients (Haskell, jquery, PureScript)

I Safe links

39 / 39

Conclusion

I Types and webservices can be friends
I By defining your API as a type, you can get for free:

I Server boilerplate
I Documentation
I Clients (Haskell, jquery, PureScript)
I Safe links

39 / 39

