
Streaming data and garbage collection in Accelerate

Robert Clifton-Everest (robertce@cse.unsw.edu.au)

UNSW

mailto:robertce@cse.unsw.edu.au

GPUs

• Lots of raw computing power

- This one: 2688 cores @ 867 MHz

• Different hardware design

- Limited instruction set

- SIMD: Cores run the same program, but on different data

• How can we take advantage of this power?

With a high-level embedded language of course!

Accelerate

An embedded language for GPU programming

• A deep embedding

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)  
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e

zipWith :: (Exp a -> Exp b -> Exp c)
 -> Acc (Array sh a)
 -> Acc (Array sh b)
 -> Acc (Array sh c)

fold :: (Exp e -> Exp e -> Exp e)
 -> Exp e
 -> Acc (Array (sh:.Int) e)
 -> Acc (Array sh e)

Accelerate

Caenorhabditis elegans

Worm processing

• Lots of data

- GPU has relatively little memory

• Process a frame at a time?

- Space issues reduced

- What if frames are actually very small?

Sequences (streams)

• Sequences of arrays (or tuples of arrays)

• Can only be accessed linearly

• So map, fold and scan, but no permuting, indexing or constant time length

• Processed in chunks

• Vectorisation

• Where do they fit in with the rest of the language?

Stratification

Acc
Array

Exp
Int Float

Word32
BoolDouble

Sequences

Acc
Array

Seq
[]Array

Exp
Int Float

Word32
BoolDouble

Input and processing

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

streamIn :: Arrays a => [a] -> Seq [a]

Array or tuple of
arrays (not a
sequence)

Output

streamOut :: Arrays a => Seq [a] -> [a]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always
the same size

collect :: Arrays a => Seq a -> Acc a

• Chunk-wise processing? Still ongoing.

• Out of core algorithms? Yes*

How much of it works?

*See subsequent slides

Garbage Collection

Host Device

The table

• Host keys

- Stable names?

Stable names

mkStableName a = mkStableName b ⟹ a = b

makeStableName :: a -> IO (StableName a)

data StableName a

Do they make for a good key?

The table

• Host keys

- Stable names? Not very stable.

- Raw pointers?

• Not unique, but it should be okay right?

• Removal

- Weak pointers and finalizers.

data Array sh e = Array … Addr#

Weak pointers

mkWeak :: k -> v -> Maybe (IO ()) —> IO (Weak v)

deRefWeak :: Weak v -> IO (Maybe v)

finalize :: Weak v -> IO ()

Establishes a weak pointer to k, with value v and a finalizer.

Dereferences a weak pointer. If the key is still alive, then Just v is returned
(where v is the value in the weak pointer), otherwise Nothing is returned.

Causes the finalizer associated with a weak pointer to be run immediately.

Establishes a weak pointer to k, with value v and a function that may run
some arbitrary time in the future.

Dereferences a weak pointer. If the key is still alive, then Just v is probably
returned (where v is the value in the weak pointer), otherwise Nothing is
returned.

Causes the finalizer associated with a weak pointer to be run eventually.

Dig deeper

• Attach weak pointer to a primitive type.

- Stops finalizers firing early

- mkWeak#

- Doesn’t work for Addr#

- Does work for MutVar#

• Raw pointers don’t work as keys

- Instead generate a unique value every time host-side array is constructed.

data Array sh e = Array … Addr#

data Array sh e = Array … MutVar# … Addr#

data Array sh e = Array … Int … MutVar# … Addr#

getUniqueId :: Array sh e -> IO Int

Caching

5s ago10s ago1s ago

Other stuff

• Fragmentation

- Compaction?

• GPU is shared with other process?

- Serious problems.

