Streaming data and garbage collection in Accelerate

Robert Clifton-Everest (robertce@cse.unsw.edu.au)
UNSW



mailto:robertce@cse.unsw.edu.au

GPUs

* Lots of raw computing power

- This one: 2688 cores @ 867 MHz

» Different hardware design
- Limited instruction set

- SIMD: Cores run the same program, but on different data

- How can we take advantage of this power?

With a high-level embedded language of course!




Accelerate
An embedded language for GPU programming

:e\.;z



Accelerate

* A deep embedding

type Vector e = Array (Z:.Int) e type Scalar e = Array Z e
dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

T

fold :: (Exp e -> Exp e -> EXp e)
-> EXp e
-> Acc (Array (sh:.Int) e)

-> Acc (Array sh e)

zipWith :: (Exp a -> Exp b -> Exp c)
-> Acc (Array sh a)
-> Acc (Array sh b)

-> Acc (Array sh c)
| , —




Caenorhabditis elegans




VWorm processing

« Lots of data

- GPU has relatively little memory

 Process a frame at a time?
- Space issues reduced

- What if frames are actually very small?



Sequences (streams)

Sequences of arrays (or tuples of arrays)

Can only be accessed linearly

So map, fold and scan, but no permuting, indexing or constant time length

Processed in chunks

* Vectorisation

- Where do they fit in with the rest of the language?



Stratification

-
INt

Double EXP - Boo

Float

~

. W;rdiﬁ y
4 )
Array
ACC
g J




Seqguences

4 )
INt Float
Double EXP - Boo
. V?Fif% 5;
e
Array Array []

€Q




Input and processing

streamln ::

arrdys a => Lal -> >eq [d]

Ark tuple of

arrays (not a

sequence)
s ———

toSeq :: Acc (Array (sh:.Int) e) -> Seq [Array sh e]

mapSeq :: (Acc a -> Acc b) -> Seq [a] -> Seq [b]



Output

streamOut :: Arrays a => Seq [a] -> [d]

fromSeq :: Seq [Array sh e] -> Seq (Vector sh, Vector e)

Elements not always

the same size
e —~———

collect :: Arrays a => Seq a -> Acc a



How much of it works!?

» Chunk-wise processing? Still ongoing.

 QOut of core algorithms? Yes*

*See subsequent slides



Garbage Collection

Host

Device




The table

* Host keys

- Stable names?



Stable names

data StableName a

makeStableName :: a -> I0 (StableName a)

mkStableName a mkStableName b — a = b

Do they make for a good key?



The table

* Host keys
- Stable names? Not very stable.
- Raw pointers? data Array sh e = Array .. Addr#

* Not unique, but it should be okay right?

« Removal

- Weak pointers and finalizers.



Weak pointers

mkWeak :: k -> v -> Maybe (I0 ()) —> I0 (Weak v)

Establishes a weak pointer to k, with value v and a finatizen. that may run
some arbitrary time in the future.

deRefWeak :: Weak v -> I0 (Maybe v)

Dereferences a weak pointer. If the key is still alive, then Just vV is retirably
(atiened (@ hiecevslisstivetihielwesrkthoimteak pthistariseietiviseg\is thiungdd.
returned.

finalize :: Weak v -> I0 O

Causes the finalizer associated with a weak pointer to be run emeraditely.



Dig deeper

 Attach weak pointer to a primitive type.
- Stops finalizers firing early
- mkWeak#

- Doesn’t work for Addr# data Array sh e = Array .. Addr#

- Does work for MutVar# data Ar'r'ay sh e = Ar'r'ay .. MutVar# .. Addr#

- Raw pointers don’t work as keys

- Instead generate a unique value every time host-side array is constructed.

data Array sh e = Array .. Int .. MutVar# .. Addr#

getUniqueld :: Array sh e -> I0 Int



Caching

1s ago 10sago 5sago




Other stuff

* Fragmentation

- Compaction?

- GPU is shared with other process?

- Serious problems.



