
round tripping balls (with partial isomorphisms & haskell)

For everyone’s sake, please interrupt for clarification on any of these
concepts during the talk (after they are introduced).

1. Printer. ∗ ∗ Doc is an abstract document represen-
tation.

type Printer a = a -> Doc

2. Parser. † † The list here allows non-determinism
(backtracking). The string in the result
is the unparsed remainder.newtype Parser a = Parser (String -> [(a, String)])

3. Partial isomorphisms‡. ‡ Isomorphism: A pair of functions
f : A → B and g : B → A that are
inverses such that:

1. f ◦ g ≡ idB

2. g ◦ f ≡ idA

data Iso a b = Iso
{ apply :: a -> Maybe b
, unapply :: b -> Maybe a
}

4. IsoFunctor: the functor§ from Iso to Hask (restricted to f). § Functor: A principled way of taking a
“thing” and “moving” it into a different
context whilst preserving some notion
of structure.

The canonical Haskell example is
the Functor typeclass. Given two
types (∀a, b ∈ Hask) that have a func-
tion between them (∃ f : a→ b) we
can produce a functored function
(∀F ∈ Functor. F(f) : F(a)→ F(b)).

More formally: a functor, F, is a
transformation between categories
C and D that maps morphisms and
objects in C to morphisms and objects
in D such that a few rules hold given
objects A, B ∈ C:

1. F(f : A→ B) = F(f) : F(A)→ F(B)
2. F(idA) = idF(A)

3. F(f ◦ g) = F(f) ◦ F(g)

class IsoFunctor f where
(<$>) :: Iso a b -> f a -> f b

5. ProductFunctor: a way to merge the output/input of two f’s.

class ProductFunctor f where
-- Left associative, applies before <$>
infixr 6 <*>
(<*>) :: f a -> f b -> f (a, b)

6. Alternative: try one failing that, the other.

class Alternative where
(<|>) :: f a -> f a -> f a

7. Syntax: putting it all together.

class (IsoFunctor s, ProductFunctor s, Alternative s) => Syntax s where
-- (<$>) :: Iso a b -> f a -> f b
-- (<*>) :: f a -> f b -> f (a, b)
-- (<|>) :: f a -> f a -> f a
pure :: Eq a => a -> s a -- Eq for checking the value at runtime

class Syntax s => JsonSyntax s where
-- Nest the first syntax within the second.
runSub :: s v -> s Value -> s v

-- We need a concrete way to access the underlying Aeson Value types in
-- order to work with them.
value :: s Value

Christian Marie <christian@ponies.io> https://github.com/anchor/roundtrip-aeson/
https://hackage.haskell.org/package/roundtrip/

http://www.informatik.uni-marburg.de/ rendel/unparse/

