ROUND TRIPPING BALLS (WITH PARTIAL ISOMORPHISMS & HASKELL)

For everyone’s sake, please interrupt for clarification on any of these
concepts during the talk (after they are introduced).

1. Printer. *

type Printer a = a -> Doc
2. Parser. T

newtype Parser a = Parser (String -> [(a, String)])

3. Partial isomorphisms?.

data Iso a b = Iso
{ apply :: a -> Maybe b
, unapply :: b -> Maybe a
}

4. IsoFunctor: the functorS from Iso to Hask (restricted to f).

class IsoFunctor f where
(<$>) :: Isoab->fa->fhb

5. ProductFunctor: a way to merge the output/input of two f’s.

class ProductFunctor f where
-- Left assoctative, applies before <$>
infixr 6 <*>
(<¥>) :: fa->fb->f (a, b)

6. Alternative: try one failing that, the other.

class Alternative where
<[>) :: fa->fa->fa

7. Syntax: putting it all together.

*Doc is an abstract document represen-
tation.

* The list here allows non-determinism
(backtracking). The string in the result
is the unparsed remainder.

#Isomorphism: A pair of functions
f:A— Band g : B — A thatare
inverses such that:

1. fog=idp
2. gof=idy

S Functor: A principled way of taking a
“thing” and “moving” it into a different
context whilst preserving some notion
of structure.
The canonical Haskell example is
the Functor typeclass. Given two
types (Va, b € Hask) that have a func-
tion between them (3f : a — b) we
can produce a functored function
(VF € Functor. F(f) : F(a) — F(b)).
More formally: a functor, F, is a
transformation between categories
€ and D that maps morphisms and
objects in € to morphisms and objects
in D such that a few rules hold given
objects A, B € €:

. F(f: A — B) = F(f) : F(A) — F(B)
F(ida) = idpa)
- F(fog)=F(f)oF(g)

N o=

[S8)

class (IsoFunctor s, ProductFunctor s, Alternative s) => Syntax s where

- (<$>) :: Isoab ->fa->fhb
- (<*¥>) :: fa->fb->f (a, b)
-- (</>) i fa->fa->Ffa

pure :: Eq a => a -> s a -- Eq for checking the value at runtime

class Syntax s => JsonSyntax s where
-- Nest the first syntax within the second.

runSub :: s v -> s Value -> s v

-- We need a concrete way to access the underlying Aeson Value types in

-- order to work with them.

value :: s Value

Christian Marie <christian@ponies.io>

https:/ /github.com/anchor/roundtrip-aeson/

https:/ /hackage.haskell.org/package/roundtrip/
http:/ /www.informatik.uni-marburg.de/ rendel /unparse/

