
Data Parallel Data Flow in Repa 4
Ben Lippmeier

FP-Syd 2015/2/25

Image: A♥ / Aih. flickr. CC Generic.

Intro demo.

> import Data.Repa.Flow as F 
> ws <- F.fromFiles 
 [“/usr/share/dict/words” 
 , “/usr/share/dict/connectives”] 
 F.sourceLines

> F.sourcesArity ws

2

> :type ws

ws :: Sources N (Array F Char)

> :type N 
> :type F

N :: Name N 
F :: Name F

A flow consists of a bundle of individual 
streams. We create a bundle two  
stream sources, one for each file.

(Nested Arrays)
(Foreign Arrays)

The layout name controls the 
the representation of the chunks that
make up the streams.

> print F.defaultChunkSize 
65536

> import Data.Repa.Flow.Default.Debug 
> more 0 ws

Just [“A”, “a", “aa", “aal", “aalii", “aam",
“Aani", “aardvark", “aardwolf", “Aaron", …

!

!

> more’ 0 100 ws

Just [“arbitrament”, “arbitrarily",
“arbitrariness", “arbitrary", “arbitrate”, …

The more function shows the first few elements  
from the front of the next chunk. The streams are  
stateful, so pulling a chunk consumes it.

> moret 1 ws

“the” 
“of” 
“and” 
“to” 
“a” 
“in” 
“that” 
“is” 
“was”

…

Show the next chunk of the second stream  
as a table.

> import Data.Char 
> up <- map_i B (mapS U toUpper) ws 
> more 0 up

Just [“BARRISTRESS", “BARROOM", “BARROW",
“BARROWFUL", “BARROWIST", “BARROWMAN",
“BARRULEE", “BARRULET", “BARRULETY", “BARRULY",
“BARRY", “BARRY", “BARSAC", “BARSE”, …

!

!

> :type up

up :: Sources B (Array U Char)

Apply a function to every element of the stream. 
B = Boxed. U = Unboxed. map(S) ~ Sequential.  
map(_i) ~ input version (more on this later).

> more 0 up

Just [“BARRISTRESS", “BARROOM", “BARROW",
“BARROWFUL", “BARROWIST", “BARROWMAN",
“BARRULEE", “BARRULET", “BARRULETY", “BARRULY",
“BARRY", “BARRY", “BARSAC", “BARSE”, …

> more 1 up

Just [“THE”, “OF", “AND", “TO", “A", “IN",
“THAT", “IS", “WAS", “HE", “FOR", “IT", ..

Flows are data parallel, so applying a function like 
map_i transforms all streams in the bundle.fromFiles

map

:!mkdir -p tmp

> out <- toFiles ["tmp/out1.txt" 
 , "tmp/out2.txt"] 
 $ sinkLines B U

> :type out

out :: Sinks B (Array U Char)

!

!

> :type drainP

drainP :: Source l a -> Sinks l a -> IO ()

Now we have a bundle of stream sinks. 
Data pushed into the sinks gets written out  
to the above files as text lines.

Drain all data from the sources into
the sinks, in parallel.

Polarity

Image: Axel Taferner. flickr. CC-NC-SA.

https://www.flickr.com/photos/ataferner/

map_i

map_i :: Name l2 -> (a -> b)  
 -> Sources l1 a -> m (Sources l2 b)

map_o

map_o :: Name l2 -> (a -> b)  
 -> Sinks l1 b -> m (Sinks l2 a)

pull from output 
induces  

pull from input 
 

“pully”

push to input
induces 

push to output 
 

“pushy”

“contramap”

:: a :: a

:: b :: b

+

+

data Sources i m e  
 = Sources"
 { sourcesArity :: i  
 , sourcesPull :: i -> (e -> m ()) -> m ()"
 -> m ()}

data Sinks i m e  
 = Sinks"
 { sinksArity :: i  
 , sinksPush :: i -> e -> m ()"
 , sinksEject :: i -> m () }

stream index monad element type

eat eject

module Data.Repa.Flow.Generic where

module Data.Repa.Flow.Chunked where  
import Data.Repa.Flow.Generic as G

type Sources l a = G.Sources Int IO (Array l a)

type Sinks l a = G.Sinks Int IO (Array l a)

The repa-flow packages defines 
generic flows, then various instances
with a more specific/simpler API.

groups_i
 :: Name lGrp
 -> Name lLen 
 -> (a -> a -> Bool)
 -> Sources lVal a
 -> IO (Sources (T2 lGrp lLen) (a, Int))

> toList1 0 =<< groupsBy_i U U (==)  
 =<< fromList U 1 “waabbbbllee” 

Just [(‘w’, 1), (‘a’, 2)
 , (‘b’, 4), (‘l’, 2), (‘e’, 2)]
!

groups_i

keys

(keys, lens)+

foldGroupsBy_i
 :: Name lGrp -> Name lRes
 => (n -> n -> Bool)
 -> (a -> b -> b)
 -> b
 -> Sources lSeg n
 -> Sources lVal a
 -> IO (Sources (T2 lGrp lRes) (n, b))

> sKeys <- fromList U 1 "waaaabllle"
> sVals <- fromList U 1 [10, 20, 30, 40, 50 …
> toList1 0
 =<< map_i U (\(key, (acc, n)) -> (key, acc / n))
 =<< foldGroupsBy_i U U (==)
 (\x (acc, n) -> (acc + x, n + 1))
 (0, 0) sKeys sVals
!
Just [(’w’, 10.0), (’a’, 35.0), (’b’, 60.0) …

foldGroupsBy_ii

keys values

(keys, results)+

foldGroups_ii :: .. -> Src k —> Src a -> Src (k, b)

foldGroups_iiOK Buffers

OKBlocks

foldGroups_oo

foldGroups_xx foldGroups_io

foldGroups_oo :: .. -> Snk k —> Snk a -> Snk (k, b)

foldGroups_io :: .. -> Src k —> Snk a -> Snk (k, b)
foldGroups_xx :: .. -> Src k —> Snk a -> Src (k, b)

+

!

! !

+

drain buffer

!

!

drain buffer

!

!

zipDrain altBuffer

(a * b) (a + b)

drain buffer

!

!

zipDrain altBuffer

(a * b) (a + b)

drain2

deal_o

deal_o
 :: (Int -> a -> IO ())
 -> Sinks Int IO a
 -> IO (Sinks () IO (Array l a))

uffish thought he stood
vorpal blade snicker snack

uffish
vorpal

thought
blade

he
snicker

stood
snack

burbled

spilled

(spill function)
(output)

+ 1

distribute_o
 :: Name lSrc
 -> (Int -> Array lDst a -> IO ())
 -> Sinks Int IO (Array lDst a)
 -> IO (Sinks () IO (Array lSrc (Int, a)))

(0, ‘a’) (1, ‘b’) (2, ‘c’) (0, ‘d’)
(0, ‘A’) (3, ‘B’) (3, ‘C’) (4, ‘E’)

(0, ‘c’)

distribute_o spilled

“adc”
“A”

“b”
“”

“c”
“”

“”
“BC”

+ 1

funnel_i

+

naturally sequential 
read from the input streams 

one after the other

funnel_o

+ + + +

naturally concurrent 
input streams are contending

for a shared output

1 1

controlled order of consumption
drain entire stream first,  

or round robin element-wise

uncontrolled order of consumption
elements pushed in

non-deterministic order

(0, ‘a’) (1, ‘b’)

(2, ‘c’) (0, ‘d’)(0, ‘A’) (3, ‘B’)

(3, ‘C’) (4, ‘E’)

shuffleP

drainP

add type of shuffle:

Implementation

Image: gullevek. flickr. CC-NC-SA.

repa-stream repa-eval

repa-array

repa-flow

(stream / “chain” fusion)

(delayed array fusion)

(CPS fusion)

(parallel gang management)

Code exploration.

Comparison

Image: Leo Reynolds.flickr. CC-NC-SA.

conduit - Michael Snoyman

data Pipe l i o u m r"
 = HaveOutput (Pipe l i o u m r) (m ()) o"
 | NeedInput (i -> Pipe l i o u m r)"
 (u -> Pipe l i o u m r)  
 | Done r  
 | PipeM (m (Pipe l i o u m r))  
 | Leftover (Pipe l i o u m r))"

• Pipe is an instance of Monad.
• Data can flow both ways through the pipe, and yield a final result.
• Single stream, single element at a time.
• Individual Sources created by ‘yield’ action.
• Combine pipes/conduits with fusion operators.

leftovers input elems output elems
upstream result

monad
result

pipes - Gabriel Gonzelez

data Proxy a a’ b’ b m r"
!
 = Request a’ (a -> Proxy a’ a b’ b m r)"
 | Respond b (b’ -> Proxy a’ a b’ b m r)  
 | M (m (Proxy a’ a b’ b m r))"
 | Pure r"

upstream  
input and output

downstream  
input and output underlying monad

result

• Proxy / Pipe is an instance of Monad.
• Data can flow both ways through the pipe, and yield a final result.

machines - Edward Kmett

newtype MachineT m k o"
 = MachineT"
 { runMachine :: m (Step k o (MachineT m k o))"

type Machine k o"
 = forall m. Monad m => MachineT m k o

type Process a b = Machine (Is a) b)

type Source b = forall k. Machine k b

• Like streams as used in Data.Vector stream fusion,  
 except the step function returns a whole new Machine (stream)

!
• Clean and general API, but not sure if it supports array fusion. 

 Machines library does not seem to attempt fusion.

repa-flow vs others

• Repa flow provides chunked, data parallel database-like  
 operators with a straightforward API. 

• Sources and Sinks are values rather than computations.  
 The “Pipe” between them created implicitly in IO land.

!
• API focuses on simplicity and performance via stream and  

array fusion, rather than having the most general API.
!
• Suspect we could wrap single-stream Repa flow  

 operators as either Pipes or Conduits, but neither of the  
 former seem to naturally support data parallel flows.

whence

https://github.com/DDCSF/repa

α-quality, active development
code that’s there should work ok, 

but still some missing components

