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PARTIALITY



It starts off so innocently:
head' :: [a] -> a
head' (x : _)   = x
head' []        = undefined

tail' :: [a] -> [a]
tail' (_ : xs)  = xs
tail' []        = undefined



WHATS THE
PROBLEM?

"Just don't give it an empty list." - Some Pragmatic
Programmer



THE RABBIT
HOLE



First we learn about Maybe, adulterate the type to add a rug
to sweep the unwanted kernel under.

head' :: [a] -> Maybe a
head' (x : _)   = Just x
head' []        = Nothing

tail' :: [a] -> Maybe [a]
tail' (_ : xs)  = Just xs
tail' []        = Nothing



We have abstractions to propagate things like Maybe to the
end of the control flow:

class Functor f where
    fmap :: (a -> b) -> f a -> f b

class (Functor f) => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b

liftA2
    :: (Applicative f)
    => (a -> b -> c)
    -> f a -> f b -> f c

class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b



But this is just a case of an unwanted pattern, rather than
adulterate the output type, we could refine the input type:

data NonEmpty a = a :| [a]

nonEmpty :: [a] -> Maybe (NonEmpty a)
nonEmpty (x : xs)   = Just $ x :| xs
nonEmpty []         = Nothing

head' :: NonEmpty a -> a
head' (x :| _) = x

tail' :: NonEmpty a -> [a]
tail' (_ :| xs) = xs



FUNCTOR
And using the same machinery we can lift these simpler

total functions up to the more complicated types:
headl :: [a] -> Maybe a
headl = fmap head' . nonEmpty

taill :: [a] -> Maybe [a]
taill = fmap tail' . nonEmpty



APPLICATIVE
liftA2
    :: (Applicative f)
    => (a -> b -> c)
    -> f a -> f b -> f c



MONAD
(=<<)
    :: (Monad m)
    => (a -> m b)
    -> m a -> m b



LENS &
TRAVERSALS

  fromList :: [a] -> Either [b] (NonEmpty a)
  fromList = maybe (Left []) Right . nonEmpty

  toList :: NonEmpty a -> [a]
  toList (x :| xs) = x : xs

  _NonEmpty :: Prism [a] [b] (NonEmpty a) (NonEmpty b)
  _NonEmpty = prism toList fromList

  dropTail :: NonEmpty a -> NonEmpty a
  dropTail (x :| _) = x :| []

  -- Provided you are happy with the "do nothing" response
  -- for values in the kernel of fromList
  over _NonEmpty
      :: (NonEmpty a -> NonEmpty b)
      -> [a] -> [b]



SO....
We have a lot of tools to lift functions on simpler types into

functions on more complex types.
This all sounds great, so where does it go wrong?



ROCK BOTTOM



A BINARY TREE
data Tree a =
        Leaf
    |   Node a (Tree a) (Tree a)



RED-BLACK
TREE

data Colour = Red | Black

data RBTree a =
        Leaf
    |   Node Colour a (RBTree a) (RBTree a)



OH WAIT!
Invariants:

1. Red nodes have no Red Children
2. All paths from the root node to the leaves have the same

number of black nodes



PROPERTIES
This is a common use for properties, write up your
properties that check that the invariants are valid in the
output.
Write up your Arbitrary instance for your type that
produces values that satisfy the invariant.



Sometimes, writing up code that generates the invariant
satisfying values ends up being very similar to the code
you are testing...
On top of that concern, you have to worry about the
coverage of the invariant satisfying subset.



insert
    :: (Ord a)
    => a
    -> RBTree a
    -> RBTree a

balance
    :: Colour
    -> a
    -> RBTree a
    -> RBTree a
    -> RBTree a



LET'S REFINE
data Colour = Red | Black

data RBTree a =
        Leaf
    |   Node Colour a (RBTree a) (RBTree a)



BAM!
-- Ignoring Invariant 2 since we only looking at inserts

data RedNode a = RedNode a (BlackNode a) (BlackNode a)

-- technically, the root node is supposed to be black, so this would
-- represent a red black tree in its final state.
data BlackNode a =
        Leaf
    |   BlackNode a (RedBlack a) (RedBlack a)

data RedBlack a = R (RedNode a) | B (BlackNode a)



Oh, and while we are inserting a value into the tree, the tree
can be in an intermediate state where Invariant 1 is broken

at the root:

-- This is assumed to be representing a Red Node
-- at the root
data Invariant1Broken a =
        LeftRedChild a (RedNode a) (BlackNode a)
    |   RightRedChild a (BlackNode a) (RedNode a)

data InsertState a =
        Ok (RedBlack a)
    |   Broken (Invariant1Broken a)



Wooo! Alright, now lets go rewrite those two simple yet
incredibly bug prone functions!



BEFORE
insert
    :: (Ord a)
    => a
    -> RBTree a
    -> RBTree a

balance
    :: Colour
    -> a
    -> RBTree a
    -> RBTree a
    -> RBTree a



AFTER
balanceblackl :: a -> InsertState a -> RedBlack a -> RedBlack a

balanceblackr :: a -> RedBlack a -> InsertState a -> RedBlack a

fixBroken :: InsertState a -> BlackNode a

ins :: (Ord a) => a -> RedBlack a -> InsertState a

insBlack :: (Ord a) => a -> BlackNode a -> RedBlack a

insRed :: (Ord a) => a -> RedNode a -> InsertState a

joinRedl :: a -> RedBlack a -> BlackNode a -> InsertState a

joinRedr :: a -> BlackNode a -> RedBlack a -> InsertState a

insert :: (Ord a) => a -> BlackNode a -> BlackNode a



When the compiler finally released me I had realised I hadn't
eaten for 5 days.

But I don't have a problem.



The Rabbit hole goes further with Invariant 2 and deletes,
with DataKinds or GADTs.
The deletes involve leaving the tree in an intermediate
state where invariant 2 is broken.

Not going there in this talk.



REFLECTION



So whats the problem here?
What's the difference between the [a] / NonEmpty a case?



All of the types could be injected into RBTree a much like
NonEmpty a can be injected into [a].
But theres a conceivable use for [a], values exist.
Other than implementing the core operations, users of
the of the data structure should never encounter values
that break the invariants.



REFINING TYPES
So far when I "refined" a type, I had to write up a
completely new distinct type.
Conversions between all these different types can be
potentially inefficient.
To "refine" [a], had to throw away the [] and build
NonEmpty a from a again.



We almost always use Type constructors to adulterate types
(except for Const and Identity)



So could we get more mileage from our types if we could
qualify our types to restrict or refine them instead of

adulterating them?



type RedNode a = { t : RBTree a | ??? }

type BlackNode a = { t : RBTree a | ??? }

type RedBlack a = { t : RBTree a | ??? }

type InsertState a = { t : RBTree a | ??? }



LIQUID
HASKELL



A WORKED
EXAMPLE



RED-BLACK
TREES?



Haha, goodness me no.
You can see my very very very early attempt at using

DataKinds and GADTs to do it here
And a recent experiment with Liquid Types that doesn't

quite work yet .here

https://github.com/domdere/okasaki/blob/redblack2/src/Data/SearchTree/RedBlackTree2.hs
https://github.com/domdere/fpsyd-liquid-haskell/blob/master/trash/Data/RedBlack.hs


BINOMIAL
TREES

A primitive from which Binomial heaps are built:
data BinomialTree a = BinomialTree a [a]

Defined inductively as follows:
Binomial tree of Rank 0 is a singleton node.
A binomial tree of rank r + 1 is formed by linking two
binomial trees of rank r, with one becoming a child of the
other.



MEASURES
Liquid Haskell lets you define simple functions to use in

constraints. They can't return functions though.
{-@
    measure binTreeRank :: BinomialTree a -> Int
    binTreeRank (BinomialTree x cs) = len cs
@-}



REFINED TYPES
Or Liquid Types (Logically Qualified Data Types).

Similar to Subset Types in Coq.
{-@ type BinomialTreeN a N = {t : BinomialTree a | (binTreeRank t) = N} @-}



INVARIANTS
The inductive definition results in the following invariant:
The list of children is ordered by decreasing rank, with
each element 1 rank higher than the next...



Encode invariants into the type:
data BinomialTreeList a =
        Nil
    |   Cons (BinomialTreeList a) (BinomialTree a)

{-@
    measure listlen :: BinomialTreeList a -> Int
    listlen (Nil)       = 0
    listlen (Cons xs x) = 1 + (listlen xs)
@-}

{-@ invariant {v : BinomialTreeList a | (listlen v) >= 0} @-}

{-@
    type BinomialTreeListN a N = {ts : BinomialTreeList a | (listlen ts) = N}
@-}

-- Invariant here
{-@
    data BinomialTreeList [listlen] a =
            Nil
        |   Cons    (ts :: BinomialTreeList a)
                    (t :: BinomialTreeListN a {(listlen ts)})
@-}



Let's store the rank in the structure and add an invariant for
that also:

data BinomialTree a = BinomialTree Int a (BinomialTreeList a)

{-@
    measure binTreeRank :: BinomialTree a -> Int
    binTreeRank (BinomialTree r x cs) = r
@-}

{-@
    data BinomialTree a =
        BinomialTree (r :: Int) (x :: a) (cs :: BinomialTreeListN a {r})
@-}



Can now provide guarantees on the outputs of functions
that are statically checked:

{-@ binlength :: t : BinomialTreeList a -> {x : Int | x = (listlen t)} @-}
binlength :: BinomialTreeList a -> Int
binlength Nil          = 0
binlength (Cons ts _)  = 1 + binlength ts

{-@ rank :: v : BinomialTree a -> {x : Int | x = (binTreeRank v)} @-}
rank :: BinomialTree a -> Int
rank (BinomialTree r _ _) = r
-- rank (BinomialTree _ _ cs) = binlength cs
-- rank _ = 0



Verify the inductive definition is preserved by our
implementation of the core operations:

-- | Singleton node defined to have rank 0
{-@ singletonTree :: a -> BinomialTreeN a {0} @-}
singletonTree :: a -> BinomialTree a
singletonTree x = BinomialTree 0 x Nil

-- | Rank r + 1 tree is created by linking together two rank r trees.
{-@
    link
        :: (Ord a)
        => w : BinomialTree a
        -> z : BinomialTreeN a {(binTreeRank w)}
        -> BinomialTreeN a {1 + (binTreeRank w)}
@-}
link :: BinomialTree a -> BinomialTree a -> BinomialTree a
link w@(BinomialTree rw x ws) z@(BinomialTree rz y zs)
    | x < y     = BinomialTree (rw + 1) x (Cons ws z)
    | otherwise = BinomialTree (rz + 1) y (Cons zs w)



FINAL
THOUGHTS



PROS
Don't have to manipulate proofs in parallel with program
values.
Some of the expressive capacity of Dependent Types



LIMITATIONS 1
Only some of the expressive capacity of Dependent Types
Can use any SMT solver backend apparently, but z3 is the
only with a reliable enough reputation
z3 is not free (Non-Commercial Research use only)
Using an SMT solver is a little "black boxy", not sure I
would ever want it in the compiler, don't know if that will
ever take off

Then again, I didn't think the IPod was going to be a big
deal.



LIMITATIONS 2
If refined types rule out specific patterns (e.g Red Black
trees), fails exhaustivity checking in GHC since the
function is effectively partial as far as GHC is concerned.
A lot of the time, expressing
properties/invariants/constraints is really just as
challenging as doing so in the existing type system.

So I don't think we have solved the Type complexity
problem yet.

At the moment its like a separate type system running in
parallel, gets a little schizophrenic.
Terrible error messages



{-@ binlength :: t : BinomialTreeList a -> {x : Int | x = (listlen t)} @-}
binlength :: BinomialTreeList a -> Int
binlength Nil          = 0
binlength (Cons ts _)  = 2 + binlength ts

src/Data/Binomial.hs:75:26-41: Error: Liquid Type Mismatch
   Inferred type
     VV : Int | (VV == (?c + ?a))

   not a subtype of Required type
     VV : Int | (VV == (listlen ?b))

   In Context
     ts : (BinomialTreeList a) | ((listlen ts) >= 0)
     ?b : (BinomialTreeList a) | ((listlen ?b) >= 0)
     ?a : Int | (?a == (listlen ts))
     ?c : Int | (?c == (2  :  int))



REFERENCES
AND FURTHER

READING
Z3
N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-
Jones. Refinement types for Haskell
Try Liquid Haskell - An Online Interactive Liquid Haskell
Demo

http://z3.codeplex.com/
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://goto.ucsd.edu:8090/index.html

