Compiling Strict Functional Languages using
Continuation Passing Style

Anthony M. Sloane

Programming Languages Research Group
Department of Computing
Macquarie University

Anthony.Sloane@mq.edu.au, @inkytonik

MACQUARIE
UNIVERSITY 0)}}

SYDNEY ~ AUSTRALIA

A Comprehensive Account

Figure: Cambridge University Press, 1992

O

T

DA

ICFP 2007

Compiling with Continuations, Continued

Andrew Kennedy
Microsoft Research Cambridge
akenn@microsoft.com

Figure: A More Recent View

Standard ML Fragment

> 42
42

> 2 + 3
> let val x = 1 in x + 2
3

> if true then 3 else 4
3

> (fn x => x + 1) (5)
6

Standard ML Fragment

ML>e u= z|ee|fnx=>e| (e,e') |#ie| O
|inie|letvalz=e ine’ end
| case e of inl x; => €1 | in2 22 => €9

We assume a datatype declared by
datatype (’a,’b) sum = inl of ’a | in2 of ’b

Figure: ML Terms

Continuation Passing Style (1)

42 letval $0 = 42 in
halt $0
2 + 3 letval $5 = 2 in

letval $6 = 3 in
letprim $4 = IntAdd $5 $6 in
halt $4

let x = 1 in 1letcont cl x = letval $2 = 2 in
x + 2 letprim $1 = IntAdd x $2 in
halt $1 in
letval $3 = 1 in
cl $3

Continuation Passing Style (2)

if true then 3 else 4

letval $7 = true in

letcont c3 _ = letval $5 = 3 in
halt $5 in
letcont c4 _ = letval $6 = 4 in
halt $6 in

case $7 in c3 c4

Continuation Passing Style (3)

((x : Int) => x + 1) (5)

letfun $1 c2 x = letval $3 = 1 in
letprim $2 = IntAdd x $3 in
c2 $2 in
letval $4 = 5 in
letcont c1 $0 = halt $0 in
$1 c1 $4

Continuation Passing Style (4)

(terms) CTm>3 K,L = letvalz=VinK
etz =mxzin K
letcont k z = K in L

| kzx
fkzx
case = of ki || k2
(values) CVals VW == ()| (z,y)|iniz| ez K

Figure: CPS Terms

Runtime Representations

Runtime values: 7 ::= () | (r1,72) | in;7 | (p, \kz.K)
Continuation values: ¢ ::= (p, Az.K)
Environments: p:=e|p,z— 7| pk—c

Interpretation of values:

[0l e 0 [(z,y)] p
[in: V] p in; (p(z)) [Mez.K]p

(p(z), p(y))
(p, \kz.K)

Figure: CPS Runtime Data

Execution Example (1)

let val x = 1 in x + 2
1. <empty environment>

letcont cl1 x = letval $2 = 2 in
letprim $1 = IntAdd x $2 in
halt $1 in
letval $3 = 1 in
cl $3

2. cl1 -> <continuation>

letval $3 = 1 in
cl $3

Execution Example (2)

3. $3 > 1
cl -> <continuation>

cl $3
4., x -> 1
letval $2 = 2 in
letprim $1 = IntAdd x $2 in

halt $1

5. x -> 1
$2 -> 2

letprim $1 = IntAdd x $2 in
halt $1

Execution Example (3)

6. x > 1
$1 -> 3
$2 -> 2

halt $1

Evaluation Rules

pz— [VlpF K
pkletvalz =V in K ||

pk— (p,Az. K)F L |
pkletcontkxz=KinL |

p,y—riE K

(e-let)

(e-letc)

(e-proj) Flety=mazinKJ p(z) = (r1,72)
JII! — }_ K !

(e-appc) Y 5 ,_p ﬁg U ¥ p(k) = {p’, \y.K)

(e-case) poy—orh Ky p(z) = inir

phcasexof ky k2 | p(ki) = (0, Ay.K)

" i ok — = ;.
(e-app) 7 pig’?kfﬁm) B2 0(f) = (6 A v K)

(e-halt)

pFhaltz |

Figure: CPS Evaluation

ML to CPS Translation (1)

[-] ML — (Var — CTm) — CTm
[z] = &(z)
[O] « = letvalz = () in k()
[e1 ex] & = [e1] (hz;.
[[82]] (3'\'12.'2
letcont k x = k(x) in 21 k 22))
[Cer,e2)] & = [e1] (hz1.
[[E;g]] (EZE.

letval = = (21, 22) in K(z)))

Figure: Translation Rules (1)

ML to CPS Translation (2)

[[im: e] [e] (hz.letval z = in; z in k(x))
[#i e] « [e] (Mz.let 2 = i 2 in K(z))
[fnz => €] letval f = Akx.[e] (Az.k z) in &(f)

[let val z = e; in ez end] kK =
letcont j & = [e2] & in [e1] (Az.5 2)

[case e of inl z1 => e1| in2 x2 => e2] kK =
[e] (Az.letcont k1 1 = [e1] & in
letcont k2 z2 = [e2] & in
case z of k; [| k2)

Figure: Translation Rules (2)

Why do we care?

» Every aspect of data and control flow is explicit.
» Good code can be generated directly from CPS.

» Arguably it's easier to perform transformations than in other
popular representations:
» tail call optimisation is direct

> beta reduction (inlining) is sound
» sharing is represented directly

Tail Call Optimisation (1)

[fnz=>e] k = letval f = Xkz.[e] (N\z.k z) in &(f)

Figure: Original Rule

We can do better since the continuation k is statically known.
[fnx=>e]| k = letval f=Xkzx. (e) k in&(f)

Figure: New Rule

Tail Call Optimisation (2)

(

)

(e1 e2) k
(fn xz => €
ﬂ(Fl,Fa)D
) k

(ini e

ML — CVar — CTm

kx

IIrlfl]] (EE$1.[[EQI (EISE,El k :I::;})

letval f = Ajx.(e) jink f

lex] (Azq.Jez] (Aazz.detval © = (21, 22) in k x))
[e] (hz.letval z = in; z in k x)

letval z = () in k x

[e] (Az.let <= 7z in k x)

Figure: Some Tail Call Translation Rules (2)

Beta Reduction (Inlining) is Sound

» Not so much in lambda calculus:

> In (Ax.0)(f y) it is not sound to reduce to 0, since f may not
terminate (or in ML, may have a side-effect).

» The CPS form of the expression is
)\kl.f ()\Z.()\/Q.)\X.kz O) kl Z) y

which can be safely reduced to
Aki.f (Az.k1 0) y

A-Normal Form

» “The Essence of Compiling with Continuations’, Flanagan et al.,
PLDI 1993.

» Every intermediate computation is named using a let construct.
» Many transformations need a renormalisation step.
» For example,

let x=(Ayletz=abinc)dine

reduces to
let x=(letz=abinc)ine

which is not in A-normal form.

Sharing

» Compiling some constructs can lead to undesirable duplication.

let z = (Ax.if x then a else b) cin M

reduces to non-normal form
let z = (if ¢ then a else b) in M

» One option to return to normal form is to duplicate M in
conditional:

if cthenlet z=ain Melselet z=bin M

» Better is to factor M out and reuse:

let k x =M inif cthenletz=aink zelseletz=bin k z

which is essentially creating a continuation-based form!

Read On. ..

Kennedy's paper contains much more:

» Proper discussion of CPS vs ANF and monadic style

» Full definition of a typed CPS language with exceptions

» Extension of ML-like language to exceptions and recursive functions
» Efficient graph-based implementation of CPS

» Extended example: transform functions into continuations where
possible

Questions?

Compiling with Continuations, Continued

Andrew Kennedy

Microsoft Research Cambridge
akenn@microsoft.com

Figure: ICFP 2007

http://research.microsoft.com/pubs/64044/
compilingwithcontinuationscontinued.pdf

