
Compiling Strict Functional Languages using
Continuation Passing Style

Anthony M. Sloane

Programming Languages Research Group

Department of Computing

Macquarie University

Anthony.Sloane@mq.edu.au, @inkytonik

A Comprehensive Account

Figure: Cambridge University Press, 1992

ICFP 2007

Figure: A More Recent View

Standard ML Fragment

> 42

42

> 2 + 3

5

> let val x = 1 in x + 2

3

> if true then 3 else 4

3

> (fn x => x + 1) (5)

6

Standard ML Fragment

Figure: ML Terms

Continuation Passing Style (1)

42 letval $0 = 42 in

halt $0

2 + 3 letval $5 = 2 in

letval $6 = 3 in

letprim $4 = IntAdd $5 $6 in

halt $4

let x = 1 in letcont c1 x = letval $2 = 2 in

x + 2 letprim $1 = IntAdd x $2 in

halt $1 in

letval $3 = 1 in

c1 $3

Continuation Passing Style (2)

if true then 3 else 4

letval $7 = true in

letcont c3 _ = letval $5 = 3 in

halt $5 in

letcont c4 _ = letval $6 = 4 in

halt $6 in

case $7 in c3 c4

Continuation Passing Style (3)

((x : Int) => x + 1) (5)

letfun $1 c2 x = letval $3 = 1 in

letprim $2 = IntAdd x $3 in

c2 $2 in

letval $4 = 5 in

letcont c1 $0 = halt $0 in

$1 c1 $4

Continuation Passing Style (4)

Figure: CPS Terms

Runtime Representations

Figure: CPS Runtime Data

Execution Example (1)

let val x = 1 in x + 2

1. <empty environment>

letcont c1 x = letval $2 = 2 in

letprim $1 = IntAdd x $2 in

halt $1 in

letval $3 = 1 in

c1 $3

2. c1 -> <continuation>

letval $3 = 1 in

c1 $3

Execution Example (2)

3. $3 -> 1

c1 -> <continuation>

c1 $3

4. x -> 1

letval $2 = 2 in

letprim $1 = IntAdd x $2 in

halt $1

5. x -> 1

$2 -> 2

letprim $1 = IntAdd x $2 in

halt $1

Execution Example (3)

6. x -> 1

$1 -> 3

$2 -> 2

halt $1

Evaluation Rules

Figure: CPS Evaluation

ML to CPS Translation (1)

Figure: Translation Rules (1)

ML to CPS Translation (2)

Figure: Translation Rules (2)

Why do we care?

I Every aspect of data and control flow is explicit.
I Good code can be generated directly from CPS.
I Arguably it’s easier to perform transformations than in other

popular representations:
I tail call optimisation is direct
I beta reduction (inlining) is sound
I sharing is represented directly

Tail Call Optimisation (1)

Figure: Original Rule

We can do better since the continuation k is statically known.

Figure: New Rule

Tail Call Optimisation (2)

Figure: Some Tail Call Translation Rules (2)

Beta Reduction (Inlining) is Sound

I Not so much in lambda calculus:
I In (�x .0)(f y) it is not sound to reduce to 0, since f may not

terminate (or in ML, may have a side-effect).

I The CPS form of the expression is

�k
1

.f (�z .(�k
2

.�x .k
2

0) k
1

z) y

which can be safely reduced to
�k

1

.f (�z .k
1

0) y

A-Normal Form

I “The Essence of Compiling with Continuations”, Flanagan et al.,
PLDI 1993.

I Every intermediate computation is named using a let construct.
I Many transformations need a renormalisation step.
I For example,

let x = (�y .let z = a b in c) d in e

reduces to
let x = (let z = a b in c) in e

which is not in A-normal form.

Sharing

I Compiling some constructs can lead to undesirable duplication.

let z = (�x .if x then a else b) c in M

reduces to non-normal form
let z = (if c then a else b) in M

I One option to return to normal form is to duplicate M in
conditional:

if c then let z = a in M else let z = b in M

I Better is to factor M out and reuse:

let k x = M in if c then let z = a in k z else let z = b in k z

which is essentially creating a continuation-based form!

Read On. . .

Kennedy’s paper contains much more:

I Proper discussion of CPS vs ANF and monadic style
I Full definition of a typed CPS language with exceptions
I Extension of ML-like language to exceptions and recursive functions
I Efficient graph-based implementation of CPS
I Extended example: transform functions into continuations where

possible

Questions?

Figure: ICFP 2007

http://research.microsoft.com/pubs/64044/

compilingwithcontinuationscontinued.pdf

