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ray tracing

Mandelbrot fractal

n-body gravitational simulation

Canny edge detectionSmoothLife cellular automata

stable fluid flow

...	  
d6b821d937a4170b3c4f8ad93495575d:	  saitek1	  
d0e52829bf7962ee0aa90550ffdcccaa:	  laura1230	  
494a8204b800c41b2da763f9bbbcc462:	  lina03	  
d8ff07c52a95b30800809758f84ce28c:	  Jenny10	  
e81bed02faa9892f8360c705241191ae:	  carmen89	  
46f7d75718029de99dd81fd907034bc9:	  mellon22	  
0dd3c176cf34486ec00b526b6920b782:	  helena04	  
9351c4bc8c8ba17b58d5a6a1f839f356:	  85548554	  
9c36c5599f40d08f874559ac824d091a:	  585123456	  
4b4dce6c91b429e8360aa65f97342e90:	  5678go	  
3aa561d4c17d9d58443fc15d10cc86ae:	  momo55	  

Recovered	  150/1000	  (15.00	  %)	  digests	  in	  59.45	  s,	  185.03	  MHash/sec

Password “recovery” (MD5 dictionary attack)
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Accelerate

• Accelerate is a Embedded Domain-Specific Language for high-performance 
computing

Haskell/Accelerate 
program

CUDA

Compile and load 
on to the GPU

Copy result back to Haskell

Reify and optimise 
Accelerate program

LLVM IR
or CPU

or both
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LLVM

• Compiler infrastructure project written for use by other compiler writers


- Not intended for end users: low level representation


- Includes optimisation and code generation support for many architectures, 
including x86* and NVIDIA GPUs


- Supports online compilation
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LLVM… in Accelerate

• Existing backend generates CUDA C code


- But, calling nvcc from an online compiler is expensive

• IDEA: A new backend that generates LLVM IR


- NVIDIA GPU code using NVPTX/libNVVM, execute with CUDA bindings


- Vectorized x86 code, execute using machine-code JIT


- Other targets possible: reuse and share functionality
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Accelerate-LLVM

• Accelerate compiler infrastructure project

accelerate

accelerate-llvm

accelerate-llvm-native accelerate-llvm-ptx

- code generation 
- memory management 
- scheduling 
- etc…

- skeletons 
- compilation 
- etc…
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- operations are parameterised by the type of the backend Target


-  can contain target-specific state (caches, execution resources)

class Target arch where 
  targetTriple          :: arch {- dummy -} -> Maybe String 
  targetDataLayout      :: arch {- dummy -} -> Maybe DataLayout



Accelerate-LLVM

• A framework for implementing LLVM-based Accelerate backends


- operations are parameterised by the type of the backend Target


-  can contain target-specific state (caches, execution resources)

class Target arch where 
  targetTriple          :: arch {- dummy -} -> Maybe String 
  targetDataLayout      :: arch {- dummy -} -> Maybe DataLayout

data PTX = PTX { 
    ptxContext         :: Context 
  , ptxMemoryTable     :: MemoryTable 
  , ptxStreamReservoir :: Reservoir 
 } 

data Native = Native { 
    nativeThreadGang   :: Gang 
 }
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• A framework for implementing LLVM-based Accelerate backends


- Code generation for scalar operations is (mostly) uniform, shared by all


- Backends must specify how to instantiate each skeleton

class Skeleton arch where 
  map   :: (Shape sh, Elt a, Elt b) 
        => arch 
        -> Gamma aenv 
        -> IRFun1    aenv (a -> b) 
        -> IRDelayed aenv (Array sh a) 
        -> CodeGen [Kernel arch aenv (Array sh b)]

generated LLVM IR

free array 
variables

LLVM global function
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Accelerate-LLVM

• A framework for implementing LLVM-based Accelerate backends


- Compile to the backend-specific [executable] format


- Automatically caching code with the knot-tying trick (as used by run1)

class Target arch => Compile arch where 
  data ExecutableR t 
  compileForTarget :: DelayedOpenAcc aenv a 
                   -> Gamma aenv 
                   -> LLVM arch (ExecutableR arch)

class-associated datatype

instance Target PTX where 
  data ExecutableR PTX = PTXR { ptxKernel :: [CUDA.Kernel] 
                              , ptxModule :: CUDA.Module } 

instance Target Native where 
  data ExecutableR Native = NativeR { Function }
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Accelerate-LLVM

• A framework for implementing LLVM-based Accelerate backends


- Abstracts over AST traversals and the target type

class Remote arch => Execute arch where 
  map :: (Shape sh, Elt b) 
      => ExecutableR arch 
      -> Gamma aenv 
      -> AvalR arch aenv 
      -> StreamR arch 
      -> sh 
      -> LLVM arch (Array sh b)

memory management

asynchronous 
operations
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Accelerate-LLVM

• A collection of reusable components


- Functionality provided by target-parameterised classes


- Associated data-types for backend specific features 

• Backends just specify what to do with each collective operation


- CUDA backend: 9500 LOC


- LLVM backend:


• Base framework: 5400 LOC


• Native backend*: 2400 LOC


• PTX backend*: 4600 LOC

*not all operations supported



Implementation details
… & other dirty little secrets



Code generation

• Code generation uses the LLVM C/C++ API (via llvm-general)


• Generates clean, optimised LLVM directly in SSA


- No stack allocation of mutable variables (alloca instruction)


- Branches and loops use phi nodes


- Adds appropriate annotations (NoUnwind, NoAlias, etc…)


- Monadic interface to generating LLVM IR


• Skeletons are designed to allow LLVM auto-vectorisation (native target)


- Generates SSE/AVX instructions for maps, folds, etc.



Code generation

• For GPU, supports compilation by both NVPTX and libNVVM


- NVPTX: open source component of LLVM


- libNVVM: closed source optimiser which is part of the CUDA toolkit


• Tension


- libNVVM requires llvm == 3.2; but


- Auto-vectorisation requires llvm >= 3.3
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- Crossing the FFI barrier into the LLVM API entails foreign state


- LLVM-General API brackets creation and destruction of FFI calls: can not 
return anything from the continuation that depends on the foreign object



Executing x86

• The native backend lowers the LLVM IR into machine code


- Crossing the FFI barrier into the LLVM API entails foreign state


- LLVM-General API brackets creation and destruction of FFI calls: can not 
return anything from the continuation that depends on the foreign object

withHostTargetMachine :: (TargetMachine -> IO a) -> ErrorT String IO a

Required to compile to machine code



Executing x86

• The native backend lowers the LLVM IR into machine code


- Crossing the FFI barrier into the LLVM API entails foreign state


- LLVM-General API brackets creation and destruction of FFI calls: can not 
return anything from the continuation that depends on the foreign object

withHostTargetMachine :: (TargetMachine -> IO a) -> ErrorT String IO a

Required to compile to machine code

must not depend on the 
 TargetMachine



Executing x86

• Capture compiled foreign functions into a worker thread

data Req = ReqDo (IO ()) | ReqShutdown 

data Function = Function { 
    functionTable      :: [(String, FunPtr ())] 
  , functionReq        :: MVar Req 
  , functionResult    :: MVar () 
  }



Executing x86

• Capture compiled foreign functions into a worker thread

- Tell the thread to execute an action by writing it into the Req var

data Req = ReqDo (IO ()) | ReqShutdown 

data Function = Function { 
    functionTable      :: [(String, FunPtr ())] 
  , functionReq        :: MVar Req 
  , functionResult    :: MVar () 
  }

thread is woken up 
when Req is filled



Executing x86

• Capture compiled foreign functions into a worker thread

- Tell the thread to execute an action by writing it into the Req var

- Wait for it to finish by reading from the result var

data Req = ReqDo (IO ()) | ReqShutdown 

data Function = Function { 
    functionTable      :: [(String, FunPtr ())] 
  , functionReq        :: MVar Req 
  , functionResult    :: MVar () 
  }

signal caller on completion

thread is woken up 
when Req is filled



Executing x86

• Capture compiled foreign functions into a worker thread

- Tell the thread to execute an action by writing it into the Req var

- Wait for it to finish by reading from the result var

- A finaliser on the Function sends ReqShutdown automatically on GC

data Req = ReqDo (IO ()) | ReqShutdown 

data Function = Function { 
    functionTable      :: [(String, FunPtr ())] 
  , functionReq        :: MVar Req 
  , functionResult    :: MVar () 
  }

signal caller on completion

thread is woken up 
when Req is filled



Executing x86

• The Function object executes the compiled LLVM executable


- Communicating via MVars has some overhead

compileForNativeTarget acc aenv = do 
  … 
  fun <- startFunction $ \loop -> 
    withContext                  $ \ctx -> 
    … 
    withModuleInEngine mcjit mdl $ \exe -> do 
        funs <- getGlobalFunctions ast exe 
        loop funs

startFunction 
    :: (([(String, FunPtr ())] -> IO ()) -> IO ()) 
    -> IO Function
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Executing x86

• The Function object executes the compiled LLVM executable


- Communicating via MVars has some overhead

compileForNativeTarget acc aenv = do 
  … 
  fun <- startFunction $ \loop -> 
    withContext                  $ \ctx -> 
    … 
    withModuleInEngine mcjit mdl $ \exe -> do 
        funs <- getGlobalFunctions ast exe 
        loop funs

seven!

startFunction 
    :: (([(String, FunPtr ())] -> IO ()) -> IO ()) 
    -> IO Function

starts worker threads, 
waits for requests



GPU memory management

• Require an association between host-side and device-side arrays


• Build a weak memory table from host side array to device side array


- When the host array is GC’d, deallocate array and remove from the table

type MT c = MVar ( IntMap (RemoteArray c) ) 

data MemoryTable c = MemoryTable { 
    memoryTable     :: MT c 
  , memoryNursery   :: Nursery (c ()) 
  , weakTable       :: Weak (MT c) 
  }



GPU memory management

• Pure functional programs tend to have high allocation/deallocation rates


- No in-place updates


- Allocations and deallocations are expensive in CUDA


• Instead if immediately deallocating arrays, keep it for later reuse in the nursery


- A map from byte size to memory areas of that size


- Allocate in pages, check the nursery first before allocating fresh data

type NRS a      = MVar ( IntMap (Seq a) ) 
data Nursery a  = Nursery (NRS a) (Weak (NRS a))



Results
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Mandelbrot fractal
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Ray tracer
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Composable scheduling



Unbalanced workloads
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Figure 13. Unbalanced Workloads

implementation, every element in the output volume is computed
independently and takes the same amount of time. However, we
can improve the overall runtime by returning a constant zero value
(black pixel) for voxels corresponding to the air surrounding the
physical object. This is done by summing the surrounding voxels
in the source data, and testing the sum against a user defined thresh-
old. This is faster than calculating the true interpolated result, but
again makes the workload unbalanced.

5.2.1 Spacial Correlation and Interleaved Evaluation
The workloads of our three examples are unbalanced because the
cost to compute each array element is not uniform throughout the
array. The standard Repa evaluation method chunks the underly-
ing row-major vector evenly between the available threads. When
using cursored arrays we instead proceed column-wise as this is
more cache-efficient when performing convolutions on 2-d matri-
ces. The figure below shows both of these methods, assuming we
are computing the matrix with three threads.
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With both the Chunked and Column-wise method, the spacial cor-
relation between features in the result array, and computational
workloads maps directly onto the physical processors. The left of
Figure 14 is a ThreadScope plot that shows the effect of this cor-
relation in sharp relief. The plot is for the interpolator on seven
threads, which shows the threads that compute non-zero data in the
result take significantly longer to run. The plot is for the entire run
of the program, and the high-activity bursts at the beginning and
end are due to reading source data and writing the output to file.

A well known solution to this problem is to move to an in-
terleaved evaluation method instead [15], also shown in the fig-
ure above. When applied to ray tracing this approach is classically

Figure 14. Interpolator Thread Activity

data I r1
instance Source (I r1) sh e
data Array (I r1) sh e

= HintInterleave (Array r1 sh e)

instance ( Shape sh, Load D sh e)
=> Load (I D) sh e where

loadP (HintInterleave (ADelayed sh getElem)) marr
= fillInterleavedP (size sh) (unsafeWriteMArr marr)

(getElem . fromIndex sh)
loadS (HintInterleave arr) marr = loadS arr marr

instance Structured rs a => Structured (I rs) a where
type TR (I rs) = I (TR rs)
...

Figure 15. Interleave Hints

known as image space partitioning to distinguish it from object
space partitioning which divides the model being rendered. As
with all static load-balancing strategies, there is still a chance that
the runtime-workload will correlate with the assigned thread index,
though this would be unlikely for the three applications shown in
Figure 13. Lee and Raghavendra [6] compare related strategies.

We implement our new interleaved evaluation method similarly
to the smallness hints from §5.1.1, with the main definitions given
Figure 15. Whereas application of computeP to an array of type
Array D DIM2 Int will use chunked evaluation, application to
an Array (I D) DIM2 Int now uses interleaved evaluation, im-
plemented by fillInterleavedP. The right of Figure 14 shows
the result of using interleaved evaluation for the interpolator. All
threads now run for approximately the same period of time, and of
the overall runtime of the program is shorter.

5.2.2 Hint Propagation and Interaction
The Load instance in Figure 15 only works for Delayed (D) arrays,
and not Cursored (C) arrays as well. As described in §4.4, cursored
arrays are used to share intermediate computations between adja-
cent array elements, and this process depends on a particular traver-
sal order. As adjacent elements must be computed in the same loop
iteration, using interleaved evaluation with cursored arrays would
be of no benefit.

Smallness hints and interleave hints interact in a natural way. If
a delayed array is wrapped in an Interleave (I) hint, this signals that
its parallel computation will be unbalanced. If it is then wrapped in
a Smallness (S) hint as well, this signals that it is a small amount
of work relative to some larger computation. The combination of
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arrays are used to share intermediate computations between adja-
cent array elements, and this process depends on a particular traver-
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iteration, using interleaved evaluation with cursored arrays would
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We implement our new interleaved evaluation method similarly
to the smallness hints from §5.1.1, with the main definitions given
Figure 15. Whereas application of computeP to an array of type
Array D DIM2 Int will use chunked evaluation, application to
an Array (I D) DIM2 Int now uses interleaved evaluation, im-
plemented by fillInterleavedP. The right of Figure 14 shows
the result of using interleaved evaluation for the interpolator. All
threads now run for approximately the same period of time, and of
the overall runtime of the program is shorter.

5.2.2 Hint Propagation and Interaction
The Load instance in Figure 15 only works for Delayed (D) arrays,
and not Cursored (C) arrays as well. As described in §4.4, cursored
arrays are used to share intermediate computations between adja-
cent array elements, and this process depends on a particular traver-
sal order. As adjacent elements must be computed in the same loop
iteration, using interleaved evaluation with cursored arrays would
be of no benefit.

Smallness hints and interleave hints interact in a natural way. If
a delayed array is wrapped in an Interleave (I) hint, this signals that
its parallel computation will be unbalanced. If it is then wrapped in
a Smallness (S) hint as well, this signals that it is a small amount
of work relative to some larger computation. The combination of

Figure 13. Unbalanced Workloads

implementation, every element in the output volume is computed
independently and takes the same amount of time. However, we
can improve the overall runtime by returning a constant zero value
(black pixel) for voxels corresponding to the air surrounding the
physical object. This is done by summing the surrounding voxels
in the source data, and testing the sum against a user defined thresh-
old. This is faster than calculating the true interpolated result, but
again makes the workload unbalanced.

5.2.1 Spacial Correlation and Interleaved Evaluation
The workloads of our three examples are unbalanced because the
cost to compute each array element is not uniform throughout the
array. The standard Repa evaluation method chunks the underly-
ing row-major vector evenly between the available threads. When
using cursored arrays we instead proceed column-wise as this is
more cache-efficient when performing convolutions on 2-d matri-
ces. The figure below shows both of these methods, assuming we
are computing the matrix with three threads.
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With both the Chunked and Column-wise method, the spacial cor-
relation between features in the result array, and computational
workloads maps directly onto the physical processors. The left of
Figure 14 is a ThreadScope plot that shows the effect of this cor-
relation in sharp relief. The plot is for the interpolator on seven
threads, which shows the threads that compute non-zero data in the
result take significantly longer to run. The plot is for the entire run
of the program, and the high-activity bursts at the beginning and
end are due to reading source data and writing the output to file.

A well known solution to this problem is to move to an in-
terleaved evaluation method instead [15], also shown in the fig-
ure above. When applied to ray tracing this approach is classically

Figure 14. Interpolator Thread Activity

data I r1
instance Source (I r1) sh e
data Array (I r1) sh e

= HintInterleave (Array r1 sh e)

instance ( Shape sh, Load D sh e)
=> Load (I D) sh e where

loadP (HintInterleave (ADelayed sh getElem)) marr
= fillInterleavedP (size sh) (unsafeWriteMArr marr)

(getElem . fromIndex sh)
loadS (HintInterleave arr) marr = loadS arr marr

instance Structured rs a => Structured (I rs) a where
type TR (I rs) = I (TR rs)
...
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known as image space partitioning to distinguish it from object
space partitioning which divides the model being rendered. As
with all static load-balancing strategies, there is still a chance that
the runtime-workload will correlate with the assigned thread index,
though this would be unlikely for the three applications shown in
Figure 13. Lee and Raghavendra [6] compare related strategies.

We implement our new interleaved evaluation method similarly
to the smallness hints from §5.1.1, with the main definitions given
Figure 15. Whereas application of computeP to an array of type
Array D DIM2 Int will use chunked evaluation, application to
an Array (I D) DIM2 Int now uses interleaved evaluation, im-
plemented by fillInterleavedP. The right of Figure 14 shows
the result of using interleaved evaluation for the interpolator. All
threads now run for approximately the same period of time, and of
the overall runtime of the program is shorter.

5.2.2 Hint Propagation and Interaction
The Load instance in Figure 15 only works for Delayed (D) arrays,
and not Cursored (C) arrays as well. As described in §4.4, cursored
arrays are used to share intermediate computations between adja-
cent array elements, and this process depends on a particular traver-
sal order. As adjacent elements must be computed in the same loop
iteration, using interleaved evaluation with cursored arrays would
be of no benefit.

Smallness hints and interleave hints interact in a natural way. If
a delayed array is wrapped in an Interleave (I) hint, this signals that
its parallel computation will be unbalanced. If it is then wrapped in
a Smallness (S) hint as well, this signals that it is a small amount
of work relative to some larger computation. The combination of



Scheduling

• Have: parallel code that performs well


• Want: for that performance to be preserved under composition


- Unbalanced workloads


- Non-CPU resources such as the GPU are contending for attention


- Resources (potentially) have different memory spaces


- Multiple schedulers need to coordinate effectively


- Avoid oversubscription (which famously troubles OpenMP)



Work stealing

• For example, a work stealing scheduler might look like:


1. Steal from local CPUs; else


2. Steal back from the GPU; else


3. Steal from the network; else


4. Sleep to avoid spamming the scheduler; then goto step 1



Work stealing

• For example, a work stealing scheduler might look like:


1. Steal from local CPUs; else


2. Steal back from the GPU; else


3. Steal from the network; else


4. Sleep to avoid spamming the scheduler; then goto step 1

• Rather than committing to a particular scheduling algorithm, construct the 
scheduler — possibly at runtime — from reusable components.
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Lazy binary splitting

• A resource transformer that provides adaptive work-stealing

- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk) 

- Avoids oversubscription

- Threads use their local deque as an approximation of system load

• When the WorkSearch returns a unit of work, take the first ppt elements and 
decide what to do with the rest…

1. If it is smaller than ppt elements, push it back onto the deque

2. If the deque is not empty, push it back

3. The deque is empty: split it in half and push both pieces back
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Hybrid CPU/GPU backend

• Goal: compose these new CPU and GPU targeting backings so that the 
composition evaluates expressions cooperatively


- Since operations are parameterised by the type of the backend target, this 
enables easy vertical composition

compileForMulti acc aenv = 
  MultiR <$> compileForTarget acc aenv `with` ptxTarget 
         <*> compileForTarget acc aenv `with` nativeTarget 

Class function, implemented 
by each backend target

select specific target



Executing hybrid programs

• Resource stacks provide easy vertical composition of a scheduler


• Executing hybrid programs collectively requires horizontal composition


- Can’t simply call each individual backend’s execution code, as we did for 
compilation


- Each backend executes a different operation — not just splitting work


- Multi-step operations like fold, scan, require deep coordination…
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• For simple operations where each element is independent…


- Add a steal action at the bottom of each resource stack: CPU ⟷ GPU


- Use a proxy thread that selects which target to launch
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Executing hybrid programs

• For simple operations where each element is independent…


- Add a steal action at the bottom of each resource stack: CPU ⟷ GPU


- Use a proxy thread that selects which target to launch

1. Lazy binary splitting of: 
1. Process local queue 
2. Steal from CPUs 
3. Steal back from GPU

1. Lazy binary splitting of: 
1. Process local queue 
2. Steal back from CPUs

Begin hybrid execute

thread 1: GPUthread 0:CPU

Copy sections to GPU Copy sections to host
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Results

• In progress…


- Since the GPU is much faster than the 8 CPUs (10x) it quickly finishes its 
work and steals most of the CPU work before the CPUs can contribute


- Investigate a different initial split (currently 50/50) or steal strategy


