ales from NVIDIA

Seattle, Washington, USA

g

Ol SN

% OF

o P -

’ *~ -
~
< \’_-9_.\'
.-

R~ e

-

L) .
X
N LF o

:%‘
s o .
; g
LU K

A

.

- 4
' .
-

RS

) >
as
- ™
- -
g P » - ’
- " -
v,
. y & .
. .
)

R S ——)

" v

46 F, grey, gloomy, (8° <)

W‘ QTEK- probably raining.

(Basically a Tim Burton movie)

Ntto://thecatmeal. com/blog/seattle_weather

SPK\\J@ (See winter)

Ntto://thecatmeal. com/blog/seattle_weather

Finally shows up in late July.

SUMMEIR: e whot ey e mor s
how AMAAAAAZING our weather is

Oft GOD... \T'S HERE

Ntto://thecatmeal. com/blog/seattle_weather

2 SECOWDS LATER

VAR

plog/seatle weather

-
B e e e B R I S e
2 RS N PITERE PITITY RAIME X S MERAS e ro

An embedded language for CPU and GPU
metaprogramming

Trevor L. McDonell
University of New South Wales, Australia Vinod Grover
Sean Lee

¥ tlmcdonell
() tmcdonell

Smootkﬂe cellular automata

stable fluid flow

d6b821d937a4170b3c418ad93495575d:
doe52829b17962ee0aa90550ffdcccaa:
494a8204b800c41b2da763f9bbbcc462:
d8ff07c52a95b30800809758f84ce28c:
e81bed021aa9892f8360c705241191ae:
4617d75718029de99dd81fd907034bc9:
0dd3c176ct34486ec00b526b6920b782:
9351c4bc8c8bal7b58d5a6a1f8391356:
9¢36c5599140d08+874559ac824d091a:
4b4dce6c91b429e8360aab5197342e90:
3aa561d4c17d9d58443fc15d10cc86ae:

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attack)
- A U\ L~ 4

n-body gravitational simulation

saitekl
laural23e
1ina03
Jenny10
carmen89
mellon22
helenad4
85548554
585123456
5678go
momo55

Canny edge detection

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Haskell/Accelerate
program
‘—J

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Haskell/Accelerate
program
e —

Reify and optim\ _
Accelerate program b \ J

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Haskell/Accelerate
program
L —

Compile and load
Reify and optimise _ on to the GPU
Accelerate program b \ . J

—

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Copy result back to Haskell

Haskell/Accelerate
program
‘-—-J
Compile and load
Reify and optimise _ on to the GPU
Accelerate program b \ CUDA J

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Copy result back to Haskell

A

Haskell/Accelerate
program
‘-—'—J‘

Compile and load
Reify and optimise _ on to the GPU
Accelerate program | \ e ,

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance

computing

A

Haskell/Accelerate
program

|

R —

Reify and optim\
Accelerate program b \

Copy result back to Haskell

%m % R

Compile and load
on to the GPU

or CPU

Accelerate

 Accelerate is a Embedded Domain-Specific Language for high-performance
computing

Copy result back to Haskell

A

Haskell/Accelerate
program
‘-——J—

Compile and load

Reify and optimise _ on to the GPU

Accelerate program [N \ P or CPU
e or bt

Accelerate-LLL VM backend

LLVM

- Compiler infrastructure project written for use by other compiler writers
- Not intended for end users: low level representation

- Includes optimisation and code generation support for many architectures,
including x86* and NVIDIA GPUs

- Supports online compilation

LLVM... In Accelerate

LLVM... In Accelerate

- Existing backend generates CUDA C code

- But, calling nvce from an online compiler is expensive

LLVM... In Accelerate

- Existing backend generates CUDA C code

- But, calling nvce from an online compiler is expensive

- IDEA: A new backend that generates LLVM IR
- NVIDIA GPU code using NVPTX/libNVVM, execute with CUDA bindings
- Vectorized x86 code, execute using machine-code JIT

- Other targets possible: reuse and share functionality

Accelerate-LLVM

« Accelerate compiler infrastructure project

accelerate

Accelerate-LLVM

« Accelerate compiler infrastructure project

accelerate

code generation
memory management
scheduling

- elc. .,

\ accelerate-llvm

Accelerate-LLVM

« Accelerate compiler infrastructure project

accelerate

code generation

\ accelerate-llvm

memory management

accelerate-llvm-native

- scheduling
- elc. .
- skeletons
\ accelerate-llvm-pitx - complation

- &1C. .,

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- operations are parameterised by the type of the backend Target

- can contain target-specific state (caches, execution resources)

class Target arch where
targetTriple :: arch {- dummy -} — Maybe String
targetDatalayout :: arch {- dummy -} —> Maybe DatalLayout

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends

- operations are parameterised by the type of the backend Target

- can contain target-specific state (caches, execution resources)

class Target arch where

targetTriple :: arch {- dummy -} — Maybe String
targetDatalayout :: arch {- dummy -} —> Maybe DatalLayout

data PTX = PTX {
ptxContext
, ptxMemoryTable
, ptxStreamReservoir

}

data Native = Native {
nativeThreadGang

}

Context
MemoryTable
Reservoir

Gang

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- Code generation for scalar operations is (mostly) uniform, shared by all

- Backends must specify how to instantiate each skeleton

class Skeleton arch where
map :: (Shape sh, Elt a, Elt b)
arch
Gamma aenv
IRFunl aenv (a — b)
IRDelayed aenv (Array sh a)
CodeGen [Kernel arch aenv (Array sh b)]

Vbl

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- Code generation for scalar operations is (mostly) uniform, shared by all

- Backends must specify how to instantiate each skeleton

class Skeleton arch where
map :: (Shape sh, Elt a, Elt b)

° generated LLVVI IR
arc

Gamma aenv ///i;;77

IRFunl aenv (a — b)‘

>
IRDelayed aenv (Array sh a)

CodeGen [Kernel arch aenv (Array sh b)]

Vbl

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends
- Code generation for scalar operations is (mostly) uniform, shared by all

- Backends must specify how to instantiate each skeleton

class Skeleton arch where

map :: (Shape sh, Elt a, Elt b) gﬁ%fKEﬂatEXj_Lk/hA W%
= arch
—y Gamma aenv
//////////C;IRFunl aenv (a = b)* ;
—> IRDelayed aenv (Array sh a)
fﬂgG}EﬁﬂE}V —> CodeGen [Kernel arch aenv (Array sh b)]

varaples

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends
- Code generation for scalar operations is (mostly) uniform, shared by all

- Backends must specify how to instantiate each skeleton

class Skeleton arch where

map :: (Shape sh, Elt a, Elt b) gﬁ%fKEﬂatEXj_Lk/hA W%
= arch
—y Gamma aenv ////;;77
//////////i; IRFunl aenv (a = b)* Y
—> IRDelayed aenv (Array sh a)
TREG?EiHE)y —> CodeGen [Kernel arch aenv (Array sh b)]
variables ’\

VIV glooal Tunction

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- Compile to the backend-specific [executable] format

- Automatically caching code with the knot-tying trick (as used by runi)

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- Compile to the backend-specific [executable] format

- Automatically caching code with the knot-tying trick (as used by runi)

class Target arch = Compile arch where
data ExecutableR t
compileForTarget :: DelayedOpenAcc aenv a
—> Gamma aenv
—> LLVM arch (ExecutableR arch)

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends
- Compile to the backend-specific [executable] format

- Automatically caching code with the knot-tying trick (as used by runi)

Class-associated datatype

class Target arch = Cgmpifé/;:z; where

data ExecutableR t 4
compileForTarget :: DelayedOpenAcc aenv a
—> Gamma aenv
—> LLVM arch (ExecutableR arch)

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends
- Compile to the backend-specific [executable] format

- Automatically caching code with the knot-tying trick (as used by run1)

Class-associated datatype

class Target arch = Cgmpifé/;::; where

data ExecutableR t 4
compileForTarget :: DelayedOpenAcc aenv a
—> Gamma aenv
—> LLVM arch (ExecutableR arch)

instance Target PTX where
data ExecutableR PTX = PTXR { ptxKernel :: [CUDA.Kernel]
, ptxModule :: CUDA.Module }

instance Target Native where
data ExecutableR Native = NativeR { Function }

Accelerate-LLVM

« A framework for implementing LLVM-based Accelerate backends

- Abstracts over AST traversals and the target type

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends

- Abstracts over AST traversals and the target type

class Remote arch = Execute arch where
map :: (Shape sh, Elt b)

ExecutableR arch

Gamma aenv

AvalR arch aenv

StreamR arch

sh

LLVM arch (Array sh b)

AR R

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends

- Abstracts over AST traversals and the target type

memory management

AN

4
class Remote arch = Execute arch where

map :: (Shape sh, Elt b)
ExecutableR arch

Gamma aenv

AvalR arch aenv
StreamR arch

sh

LLVM arch (Array sh b)

AR R

Accelerate-LLVM

- A framework for implementing LLVM-based Accelerate backends

- Abstracts over AST traversals and the target type

memory management

AN

4
class Remote arch = Execute arch where

map :: (Shape sh, Elt b)
ExecutableR arch
Gamma aenv

AvalR arch aenv
StreamR @rch

sh \\\\“-~\\‘\\§
LLVM arch (Array sh b) E%S&WWC*WR?KKDLKS
operations

AR R

Accelerate-LLVM

Accelerate-LLVM

* A collection of reusable components
- Functionality provided by target-parameterised classes

- Associated data-types for backend specific features

Accelerate-LLVM

* A collection of reusable components
- Functionality provided by target-parameterised classes

- Associated data-types for backend specific features

- Backends just specify what to do with each collective operation
- CUDA backend: 9500 LOC
- LLVM backend:
- Base framework: 5400 LOC
 Native backend™: 2400 LOC

 PTX backend*: 4600 LOC

*not all operations supported

Implementation detalls

... & other dirty little secrets

Code generation

- Code generation uses the LLVM C/C++ API (via Llvm-general)

- Generates clean, optimised LLVM directly in SSA
- No stack allocation of mutable variables (alloca instruction)
- Branches and loops use phi nodes
- Adds appropriate annotations (NoUnwind, NoAlias, etc...)

- Monadic interface to generating LLVM IR

- Skeletons are designed to allow LLVM auto-vectorisation (native target)

- Generates SSE/AVX instructions for maps, folds, etc.

Code generation

* For GPU, supports compilation by both NVPTX and libNVVM
- NVPTX: open source component of LLVM

- libNVVM: closed source optimiser which is part of the CUDA toolkit

 Tension
- lIbNVVM requires llvm == 3.2; but

- Auto-vectorisation requires llvm >= 3.3

Executing X386

* The native backend lowers the LLVM IR into machine code
- Crossing the FFI barrier into the LLVM API entails foreign state

- LLVM-General API brackets creation and destruction of FFI calls: can not
return anything from the continuation that depends on the foreign object

Executing X386

* The native backend lowers the LLVM IR into machine code
- Crossing the FFI barrier into the LLVM API entails foreign state

- LLVM-General API brackets creation and destruction of FFI calls: can not
return anything from the continuation that depends on the foreign object

—equired to complle to machine code

/

v
withHostTargetMachine :: (TargetMachine — IO a) —> ErrorT String IO a

Executing X386

* The native backend lowers the LLVM IR into machine code
- Crossing the FFI barrier into the LLVM API entails foreign state

- LLVM-General API brackets creation and destruction of FFI calls: can not
return anything from the continuation that depends on the foreign object

—equired to complle to machine code

/

v
withHostTargetMachine :: (TargetMachine — IO a) —> ErrorT String IO a
[

\

must not depend on the
largetMachine

Executing x36

- Capture compiled foreign functions into a worker thread

data Req = ReqDo (I0 ()) | RegShutdown

data Function = Function {

functionTable :: [(String, FunPtr ())]
, functionReq :: MVar Req
, functionResult 2t MVar ()

}

Executing x36

- Capture compiled foreign functions into a worker thread

- Tell the thread to execute an action by writing it into the Req var

data Req = ReqDo (I0 ()) | RegShutdown

data Function = Function { ﬂﬂ(@%%j ES\AKDP&EF}LMD
functionTable it [(String, FunPtr ())] _ o
, functionReq :: MVar Req «— VVkKETW{:kEC}\ESTMGXj
, functionResult 2t MVar ()

}

Executing x36

- Capture compiled foreign functions into a worker thread
- Tell the thread to execute an action by writing it into the Req var

- Wait for it to finish by reading from the result var

data Req = ReqDo (I0 ()) | RegShutdown

data Function = Function { ﬂﬂ(@%ﬁj ES\AKjkggr}Lﬂj
functionTable :: [(String, FunPtr ())] _ S
, functionReq :: MVar Req «— VVkKSF]F%EX] S flled

, functionResult 2t Mvar ()
} \

signal caller on completion

Executing x36

- Capture compiled foreign functions into a worker thread
- Tell the thread to execute an action by writing it into the Req var
- Wait for it to finish by reading from the result var

- A finaliser on the Function sends RegShutdown automatically on GC

data Req = ReqDo (I0 ()) | RegShutdown

data Function = Function { Nreao Eg\Aﬂjkggr]Lﬂj
functionTable :: [(String, FunPtr ())] _ S
, functionReq :: MVar Req < VVkKSF]F%EX] S flled

, functionResult 2t Mvar ()
} \

signal caler on completion

Executing x36

« The Function object executes the compiled LLVM executable

- Communicating via MVars has some overhead

compileForNativeTarget acc aenv = do

fun < startFunction $ \loop —
withContext S \ctx —

withModuleInEngine mcjit mdl $ \exe — do
funs < getGlobalFunctions ast exe
loop funs

startFunction
(([(String, FunPtr ())] — I0 ()) — I0 ())
—> TO Function

Executing x36

« The Function object executes the compiled LLVM executable

- Communicating via MVars has some overhead

compileForNativeTarget acc aenv = do

fun < startFunction $ \loop —
withContext S \ctx —

Esevem’/,,//"w-ithModuleInEng'ine mcjit mdl $ \exe — do

funs < getGlobalFunctions ast exe
loop funs

startFunction
(([(String, FunPtr ())] — I0 ()) — I0 ())
—> TO Function

Executing x36

« The Function object executes the compiled LLVM executable

- Communicating via MVars has some overhead

compileForNativeTarget acc aenv = do

fun < startFunction $ \loop —
withContext S \ctx —

Sevem/,,//"w-i’chModuleInEng'ine mcjit mdl $ \exe — do

funs < getGlobalFunctions ast exe
loop funs

starts worker threads,
/ walts for requests

startFunction
(([(String, FunPtr ())] —> I0 ()) — I0 ())
—> IO Function

GPU memory management

« Require an association between host-side and device-side arrays

- Build a weak memory table from host side array to device side array

- When the host array is GC’d, deallocate array and remove from the table

type MT ¢ = MVar (IntMap (RemoteArray c))

data MemoryTable c = MemoryTable {

memoryTable :: MT c
, memoryNursery :: Nursery (c ())
, weakTable :: Weak (MT c)

}

GPU memory management

- Pure functional programs tend to have high allocation/deallocation rates
- No in-place updates

- Allocations and deallocations are expensive in CUDA

* Instead if immediately deallocating arrays, keep it for later reuse in the nursery
- A map from byte size to memory areas of that size

- Allocate in pages, check the nursery first before allocating fresh data

type NRS a
data Nursery a

MVar (IntMap (Seq a))
Nursery (NRS a) (Weak (NRS a))

Results

Black-Scholes options pricing

20

Speedup vs. Self @ 1CPU
o o

&)

NCPU

O Repa O Accelerate-LLVM-CPU
[J
[J
w [
[J
° [J
([
° 5 - °
- °
[J
° () ()
[J
o °
® ®
([
[J
/ -
o
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Black-Scholes options pricing

O Repa O Accelerate-LLVM-CPU
40
[J
[
[J
D [
E') 30 "
— Py ®
® 0
8 °
O
o 20 o
0 o
>
g- o
© Y ® []
(% 10 ° . C - o - -
([
s []
([
Y o
- [J
([J
0

NCPU

Mandelbrot fractal

Repa (Chunk) Accelerate-LLVM-CPU (Chunk)

7
D 5.25
@)
®
®©
Q
O
o 35
0
>
Qo
-
O
o
S
& 1.75

0

1 2 3 4 6 8 10 12 14 16

NCPU

Ray tracer

O Repa O Accelerate-LLVM-CPU

14

Speedup vs. Repa @ 1CPU
=
~ ol

o
&)

NCPU

Composable scheduling

Unbalanced workloads

PN
ol

: . 3 . :‘"(&‘Aw .”l"
\—‘?Jg e o(i)'v-,-w—l;/%‘n"%‘-é"

¥ e
o

Unbalanced workloads

WINI—=]|—

1
2
2
3

1
2
2
3

1
1
2
3

WIWIN|—

Chunked

Unbalanced workloads

WINI—=]|—

1
2
2
3

1
2
2
3

1
1
2
3

WIWIN|—

Chunked

Unbalanced workloads

WIWIN|—

1
2
2
3

1
2
2
3

1
1
2
3

WINI—=]|—

Chunked

1
3
2
1

W= IN|W
= IN|W|—=
N||I—=IN

2
1
3
2

Interleaved

Scheduling

- Have: parallel code that performs well

- Want: for that performance to be preserved under composition
- Unbalanced workloads
- Non-CPU resources such as the GPU are contending for attention
- Resources (potentially) have different memory spaces
- Multiple schedulers need to coordinate effectively

- Avoid oversubscription (which famously troubles OpenMP)

Work stealing

* For example, a work stealing scheduler might look like:
1. Steal from local CPUs; else
2. Steal back from the GPU: else
3. Steal from the network; else

4. Sleep to avoid spamming the scheduler; then goto step 1

Work stealing

* For example, a work stealing scheduler might look like:
1. Steal from local CPUs; else
2. Steal back from the GPU: else
3. Steal from the network: else
4. Sleep to avoid spamming the scheduler; then goto step 1

« Rather than committing to a particular scheduling algorithm, construct the
scheduler — possibly at runtime — from reusable components.

Lazy binary splitting

* A resource transformer that provides adaptive work-stealing
- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk)
- Avoids oversubscription

- Threads use their local deque as an approximation of system load

Lazy binary splitting

* A resource transformer that provides adaptive work-stealing
- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk)
- Avoids oversubscription

- Threads use their local deque as an approximation of system load

« When the WorkSearch returns a unit of work, take the first ppt elements and
decide what to do with the rest...

Lazy binary splitting

* A resource transformer that provides adaptive work-stealing
- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk)
- Avoids oversubscription

- Threads use their local deque as an approximation of system load

« When the WorkSearch returns a unit of work, take the first ppt elements and
decide what to do with the rest...

1. If it is smaller than ppt elements, push it back onto the deque

Lazy binary splitting

* A resource transformer that provides adaptive work-stealing
- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk)
- Avoids oversubscription

- Threads use their local deque as an approximation of system load

« When the WorkSearch returns a unit of work, take the first ppt elements and
decide what to do with the rest...

1. If it is smaller than ppt elements, push it back onto the deque

2. If the deque is not empty, push it back

Lazy binary splitting

* A resource transformer that provides adaptive work-stealing
- Unlike eager binary splitting, no manual tuning parameter (TBB, Cilk)
- Avoids oversubscription
- Threads use their local deque as an approximation of system load
« When the WorkSearch returns a unit of work, take the first ppt elements and
decide what to do with the rest...
1. If it is smaller than ppt elements, push it back onto the deque
2. If the deque is not empty, push it back

3. The deque is empty: split it in half and push both pieces back

Mandelbrot fractal

Repa (Interleave) Accelerate-LLVM-CPU (LBS)
14
)
o
@
— 10.5
®
x
c
>
e
L
© 7
o
)
o
n
>
o
5
o 3.5
)
Q
n
0
1 2 3 4 6 8 10 12 14 16

NCPU

Ray tracer

O Repa (Interleave) O Accelerate-LLVM-CPU (LBS)

11 A E
D
Al []
@) °
T 825
® 0
2 []
c ®
-] ()
- °
Q v .
@ 5.5
Q °
()
C °
)
> []
=1
© 2.75
o
() °
Q °
N /

0

1 2 4 6 8 10 12 14 16
NCPU

Hybrid CPU/GPU execution

Hybrid CPU/GPU backend

« Goal: compose these new CPU and GPU targeting backings so that the
composition evaluates expressions cooperatively

- Since operations are parameterised by the type of the backend target, this
enables easy vertical composition

Hybrid CPU/GPU backena

« Goal: compose these new CPU and GPU targeting backings so that the
composition evaluates expressions cooperatively

- Since operations are parameterised by the type of the backend target, this
enables easy vertical composition

compileForMulti acc aenv =
MultiR <$> compileForTarget acc aenv "with ptxTarget
<x> compileForTarget acc aenv with nativeTarget

Hybrid CPU/GPU backena

« Goal: compose these new CPU and GPU targeting backings so that the
composition evaluates expressions cooperatively

- Since operations are parameterised by the type of the backend target, this
enables easy vertical composition

compileForMulti acc aenv =
MultiR <$> compileForTarget acc aenv "with ptxTarget
<x> compileForTarget acc aenv with nativeTarget

\

Class function, Implementec
oy each backend target

Hybrid CPU/GPU backena

« Goal: compose these new CPU and GPU targeting backings so that the
composition evaluates expressions cooperatively

- Since operations are parameterised by the type of the backend target, this
enables easy vertical composition

select speciiic target

compileForMulti acc aenv = /

MultiR <$> compileForTarget acc aenv "with ptxTarget
<x> compileForTarget acc aenv with nativeTarget

\

Class function, Implementec
oy each backend target

Executing hybrid programs

* Resource stacks provide easy vertical composition of a scheduler

» Executing hybrid programs collectively requires horizontal composition

- Can’t simply call each individual backend’s execution code, as we did for
compilation

- Each backend executes a different operation — not just splitting work

- Multi-step operations like fold, scan, require deep coordination...

Executing hybrid programs

« For simple operations where each element is independent...
- Add a steal action at the bottom of each resource stack: CPU «— GPU

- Use a proxy thread that selects which target to launch

Executing hybrid programs

« For simple operations where each element is independent...
- Add a steal action at the bottom of each resource stack: CPU «— GPU

- Use a proxy thread that selects which target to launch

Begin hybrid execute

Executing hybrid programs

« For simple operations where each element is independent...
- Add a steal action at the bottom of each resource stack: CPU «— GPU

- Use a proxy thread that selects which target to launch

Begin hybrid execute

thread O:CPU thread 1. GPU

Executing hybrid programs

« For simple operations where each element is independent...
- Add a steal action at the bottom of each resource stack: CPU «— GPU

- Use a proxy thread that selects which target to launch

Begin hybrid execute

thread O.CPU thread 1. GPU
1. Lazy binary splitting of: 1. Lazy binary splitting of:
1. Process local queue 1. Process local queue
2. Steal from CPUs 2. Steal back from CPUs

3. Steal back from GPU

Executing hybrid programs

« For simple operations where each element is independent...
- Add a steal action at the bottom of each resource stack: CPU «— GPU

- Use a proxy thread that selects which target to launch

Begin hybrid execute

thread O.CPU thread 1. GPU
1. Lazy binary splitting of: 1. Lazy binary splitting of:
1. Process local queue 1. Process local queue
2. Steal from CPUs 2. Steal back from CPUs

3. Steal back from GPU

| |

Copy sections to GPU Copy sections to host

Results

M LLVM (O3 LBS) B NVPTX . Multi

0.9
=
o
(&)
o0
®

@ 0.675
®©
k)
8
£
(1)

o 045
oc
%
>
Q
E

= 0.225
L)
5
(&)
()]
X
Ll

0

Mandelbrot Raytracer

Results

* In progress...

- Since the GPU is much faster than the 8 CPUs (10x) it quickly finishes its
work and steals most of the CPU work before the CPUs can contribute

- Investigate a different initial split (currently 50/50) or steal strategy

