
Streaming in Accelerate

Frederik Meisner Madsen

DIKU
fmma@diku.dk

August 28, 2014

A short motivation

A recent survey on the future of array-oriented computing in
Haskell by Manuel Chakravarty1 - Interesting highlights: Which
type of high-performance hardware are you interested in
using?

1http://justtesting.org/post/70881852870/

the-future-of-array-oriented-computing-in-haskell-the
1 / 1

http://justtesting.org/post/70881852870/the-future-of-array-oriented-computing-in-haskell-the
http://justtesting.org/post/70881852870/the-future-of-array-oriented-computing-in-haskell-the

A short motivation

What is the typical size of your data sets?

2 / 1

A short motivation
I Conflict:

I GPUs excel at computations on lots of data.
I Not good for small problems due to low occupancy and

overhead of GPU initialization.
I Memory capacity is limited.

I GeForce GTX 770: 4 GB device memory.

I Problem: Run out of memory fast.
I Solution: Manifest only when absolutely necessary.

Streaming

I Language design choice:
I Manual streaming:

I Easy for language implementer (do nothing).
I Nightmare for programmer (manage buffers, scheduling, tied

to specific platform).
I Language-integrated streaming:

I Nightmare for language implementer (to get right).
I Easy for programmer.

3 / 1

NESL

I Forefather to Data Parallel Haskell.

I Based on (SIMD) vector-model, suitable for GPUs.
I Small language with formal (time) cost model, suitable for

research.
I Work and step.

I Most innovative feature: Vectorization of nested data
parallelism.

I Theoretical ideal asymptotic complexity.
I With the right tricks: Scattered segment descriptors.

I Space in order of exposed parallelism.
I Naive matrix mult. requires O(N3) space.
I Even moderate sized data sets can run into space problems.
I Programmer should not be punished for exposing too much

parallelism.

4 / 1

NESL + streams

I Goal: Language-integrated streaming.

I Two container types: Vectors [τ] and sequences {σ}.
I Sequences:

I Semantically identical to vectors.
I Processed one element at a time from first to last element.

I No rewinding (time).
I Reuse same memory for each element (space).

I Backend is free to choose a chunk size.
I Data parallelism.
I CPU: Chunk size = 1.
I GPU: Chunk size = 100.000.

I Sequence of vectors {[τ]}:
I Many important applications: Lines of a file, frames of a video.
I Chunk must be able to grow dynamically to contain at least

one vector.

5 / 1

NESL syntax (simplified)

e ::= constant
| x
| let x = e1 in e2
| (e1, ..., ek) | e.k
| op e
| [e1 : x in e2]

(= map (λx .e1) e2)

op :: τ → τ

+ :: (Int, Int)→ Int
...

mkveck
τ ::

k︷ ︸︸ ︷
(τ, .., τ)→[τ]

lengthτ :: [τ]→ Int
!τ :: ([τ], Int)→ τ
concatτ :: [[τ]]→ [τ]
partitionτ :: ([τ], [Int])→ [[τ]]
scan :: [Int]→ [Int]
sum :: [Int]→ Int

...

6 / 1

NESL + streams syntax

e ::= · · ·
| sop e
| {e1 : x in e2}

sop :: σ→ σ

mkseqk
σ ::

k︷ ︸︸ ︷
(σ, .., σ)→{σ}

sconcatσ :: {{σ}}→ {σ}
flagpartσ :: ({σ}, {Bool})→{{σ}}
sscan :: {Int}→ {Int}
ssum :: {Int}→ Int
tab :: {τ}→ [τ]
seq :: [τ]→{τ}

...

7 / 1

NESL + streams

I Sequence operations can simulate almost all vector
operations, except random-access and constant-time length:

concatInt(e)

≡

tabInt(sconcatInt({seqInt(x) : x in seq[Int](e)}))

I Same time complexity in cost model.

I Similarly, sequence comprehension can simulate vector
comprehension.

I After eliminating redundant syntax, the only vector-related
syntactic constructions are:

(!τ), lengthτ , tabτ and seqτ .

8 / 1

NESL + streams

I Variables in sequence comprehension body cannot have
sequence type:

I Otherwise, sequence is reused once per element.
I Easily checked by type system.
I Workarounds:

I Explicit tabulation using tabτ .
I Explicit recomputation by inlining.

I Instead of silently making the choice in the compiler, resulting
in two significantly different time/space complexities, the
programmer is forced to make the choice.

I Vectorization:
I Note: No vector-comprehension.
I No scattered segment descriptors for sequences.

I Type system forbids the cases where it would be needed.

9 / 1

NESL + streams
I Memory cost model.

I Work and step analogue.

I Programming experience is almost as NESL.
I Forced to make decisions about what should be vectors and

what should be sequences.
I ... but without a particular backend in mind.

I Easy to reason about space.

I Open issues:
I Feasible in practice?

I Large constants in time complexity.
I Schedulability / rate analysis.

I Type system does not reject

{sum(xs)} ++ xs.

I Note that
xs ++ {sum(xs)}

is perfectly fine.

I Cost preservation theorem.

10 / 1

Accelerate

I DSL embedded in Haskell.

I Based on multi-dimensional array operations.
I Flat data parallelism (for now).

I Regular nesting, the rows of a matrix all have the same length.

I GPU backend.

11 / 1

Accelerate

Scalar a = Array Z a
Vector a = Array (Z :. Int) a
Matrix a = Array (Z :. Int :. Int) a

generate :: sh→ (sh→ a)→ Array sh a
map :: (a→ b)→ Array sh a→ Array sh b
zipWith :: (a→ b→ c)→ Array sh a→ Array sh b→ Array sh c
scanl :: (a→ a→ a)→ a→ Vector a→ Vector a
fold :: (a→ a→ a)→ a→ Array (sh :. Int) a→ Array sh a

I Omitted: Everything wrapped in Acc.
I Operations construct AST terms, run :: Acc a→ a.
I All sharing is lost initially, recovered using De Bruijn indices.

12 / 1

Accelerate + streams

I What I hope to gain:
I Data parallel streaming feasible in practice?
I Contribution to Accelerate.

I Main challenge:
I NESL + streams: Experimental toy language, designed from

scratch with streaming in mind.
I Accelerate + streams: Add streaming to real-world language.

I A multi-dimensional array in Accelerate is almost the same as
a flat vector in NESL.

I Both are fully manifest.
I Data has identical representations in memory.

I Accelerate is similar to NESL.
I Operations take array extents as additional arguments.
I Specialized array operations (e.g. stencil).
I Does not have nested vectors or vector-comprehensions.

13 / 1

Accelerate + streams - Take 1

I Like NESL + streams, introduce sequence container surface
type.

I Unlike NESL + streams, do not eliminate existing vector
operations.

I Accelerate is already optimized for high performance.
I Existing benchmarks should not become worse.
I Breaks other backends.
I Reimplementing everything defeats the purpose of using

Accelerate in the first place.

I Sequence = Ordinary Haskell list.
I {Int} ' [Scalar Int] = [Array Z Int].
I {[τ]} ' [Array (sh :. τ) τ].
I Get streaming from Haskell’s lazy evaluation strategy.

14 / 1

Accelerate + streams - Take 1

type A = Array

mapStream :: (A sh a→ A sh′ b)
→ [A sh a]→ [A sh′ b]

zipWithStream :: (A sh a→ A sh′ b→ A sh′′ c)
→ [A sh a]→ [A sh′ b]→ [A sh′′ c]

foldStream :: (A sh a→ A sh a→ A sh a)
→ A sh a
→ [A sh a]
→ A sh a

toStream :: A (sh :. Int) a→ [A sh a]
fromStream :: [A sh a]→ (Vector sh,Vector a)

15 / 1

Accelerate CUDA backend

I Execution:

executeOpenAcc :: ExecOpenAcc aenv arrs
→ aenv
→ CIO arrs

I ExecOpenAcc aenv arrs: Executable AST.
I Sharing recovery.
I Fusion.
I CUDA Code generation.
I aenv :

I Type-level list.
I Sharing context from previous let bindings.

I arrs: Result type (e.g. Vector Int).

16 / 1

Accelerate CUDA backend

I CIO = ReaderT Context (StateT State IO)
I Context: Device properties and execution context.
I State:

I Host/device memory associations.
I Compiled kernel object code.

17 / 1

Accelerate + streams - Take 1

I executeOpenAcc (MapStream f acc) aenv :: CIO [A sh a]:

executeOpenAcc (MapStream f acc) aenv =
do as ← executeOpenAcc acc aenv

mapM (executeOpenAfun f aenv) as

I Problem: Both state and IO monad are strict, all elements
will manifest.

I Lazy IO?

I Coming up with a solution - 4 failed approaches.

18 / 1

Accelerate + streams - Swapping types

I Use [CIO arrs] instead of CIO [arrs]?

I Define new function:

streamOpenAcc :: ExecOpenAcc aenv [arrs]
→ aenv
→ [CIO arrs]

streamOpenAcc (MapStream f acc) aenv =
let s = streamOpenAcc acc aenv
in map (�= executeOpenAfun f aenv) s

I For sub-expression of stream type in executeOpenAcc , call
streamOpenAcc instead of recursion.

I Problem: Sharing streams:
I Add [CIO arrs] to sharing context - Each use recomputes.
I Run stream and add [arrs] to sharing context - Tabulation.

19 / 1

Accelerate + streams - Look ahead

I Run streams immediately:
I When a stream producer (toStream) is encountered:

I Traverse AST to find it’s consumers.
I Feed all elements immediately.
I In fromStream and foldStream nodes, store result somewhere.

I When a fromStream or foldStream is encountered, simply
fetch the stored result.

I Problems:
I A seemingly irrelevant AST node may introduce a new

bindings required by a later consumer.
I zipWithStream requires two producers feeding elements in

lock-step.
I Traverse AST to find all producers in the same “loop” before

starting to feed elements.

I Many traversals, static analysis.

20 / 1

Accelerate + streams - Pipes

I Pipes is a popular library designed as a safe replacement to
lazy IO.

I Combines effects, streaming and compositionality.

I Use
Pipe aenv arrs CIO ()

instead of
aenv → CIO [arrs]?

I Define new function:

pipeOpenAcc :: ExecOpenAcc aenv [arrs]
→ Pipe aenv arrs CIO ()

I Bind arrs instead of [arrs] in aenv . Feed aenv multiple times.

21 / 1

Accelerate + streams - Pipes

I Mapping closed functions:

pipeOpenAcc (MapStream f acc) =
pipeOpenAcc acc � mapPipe (execClosedAfun f)

I Mapping open functions / let bindings:

pipeOpenAcc (Alet bnd bdy) =
(pipeOpenAcc bnd × idPipe)� mapPipe pipeOpenAcc bdy

I (×) does not exist for Pipe.
I A pipe may consume and produce in any order.

22 / 1

Accelerate + streams - Pipes

I Workarounds:
I Produce (Either a b) instead of (a, b).

I Context becomes a sum type:

Pipe (
∑

aenv) arrs CIO ()

I Buffering.
I Upstream communication: Reject, request.

I Define a less general version of Pipe where a value is always
produced directly after a value is consumed.

I Better.

23 / 1

Accelerate + streams - Pipes

I Problem number 2:

bnd :: ExecOpenAcc aenv [a]
bdy :: ExecOpenAcc aenv b (b 6= [])
executeOpenAcc (Alet bnd bdy) =??

I Bind the pipe → recomputation.
I Tabulate pipe, bind the result → tabulation.
I Make everything a pipe.

24 / 1

Accelerate + streams - Concurrency

I Scheduling shared streams seems to be the core of the
problem.

I Task parallelism is natural for stream transformers.

I Use (MVar arrs) instead of [arrs]?
I Execute stream operation:

I Fork stream transformer. Take, compute, put loop.

I Problems:
I Barrier synchronization for multiple consumers.
I Synchronize State.
I Synchronize communication with GPU.
I ... and not just for streams. A binary array operation must

wait if one operand is the result of a stream reduction.

25 / 1

Accelerate + streams - Take 1 conclusion

I Sharing streams is fundamentally different than sharing arrays.

I Imposes restrictions on evaluation order.

I Streams as first-class “changes” all other types.
I E.g. Int could be an integer available now, or an integer

available in the future.
I Not a problem in NESL + stream, compiler transforms

everything to streams.

I Stream operations promise too much:
I Partiality in the language.
I Silent stream tabulation.

26 / 1

Accelerate + streams - Take 2

I Separate stream sharing contexts from array sharing context.
I New AST: Loop lenv arrs

I Put all stream operations in Loop.
I lenv : Loop sharing context (type-level list).
I arrs: Result(s) of running the loop.
I Allow closed loops in Accelerate AST:

loop :: Loop () arrs → Acc arrs

I Sequence = De Bruijn index into lenv .
I {Int} ' Idx lenv Int.

data Idx env a where
ZeroIdx :: Idx (env , a) a
SuccIdx :: Idx env a→ Idx (env , b) a

27 / 1

Accelerate + streams - Take 2

emptyLoop :: Loop lenv ()
mapStream :: (A sh a→ A sh′ b)

→ Idx lenv (A sh a)
→ Loop (lenv ,A sh′ b) arrs
→ Loop lenv arrs

zipWithStream :: (A sh a→ A sh′ b→ A sh′′ c)
→ Idx lenv (A sh a)
→ Idx lenv (A sh′ b)
→ Loop (lenv ,A sh′′ c) arrs
→ Loop lenv arrs

28 / 1

Accelerate + streams - Take 2

foldStream :: (A sh a→ A sh a→ A sh a)
→ A sh a
→ Idx lenv (A sh a)
→ Loop lenv arrs
→ Loop lenv (arrs,A sh a)

toStream :: A (sh :. Int) a
→ Loop (lenv ,A sh a) arrs
→ Loop lenv arrs

fromStream :: Idx sh a
→ Loop lenv arrs
→ Loop lenv (arrs, (Vector sh,Vector a))

29 / 1

Accelerate + streams - Take 2

I Loop terminates when the first producer is exhausted (like zip
in Haskell or vector-comprehension in NESL).

I Status: Reference interpreter works, confident that CUDA
backend will work too.

I Difference from take 1:
I Same operations.
I Cannot let bind new arrays in Loop.
I Move array let-bindings to just before Loop:

I If not possible, array is a reduction of one of the streams of
the loop.

I Move to after Loop.
I If not possible, a stream of the loop depends on a reduction of

the loop → exactly when partiality or silent stream tabulation
was required in take 1.

I This is as far as I got.

30 / 1

Accelerate + streams - Take 2

∑n
i=1 log i

iota :: Int -> Acc (Vector Int)

iota n = generate (index1 (constant n)) unindex1

-- Take 1

logsum :: Int -> Acc (Scalar Float)

logsum n = foldStream (zipWith (+)) (use (fromList Z [0.0]))

$ mapStream (map (log . fromIntegral . (+1)))

$ toStream (iota n)

-- Take 2

logsum :: Int -> Acc (Scalar Float)

logsum n = asnd $ loop

$ toStream (iota n)

$ mapStream (map (log . fromIntegral . (+1))) ZeroIdx

$ foldStream (zipWith (+)) (use (fromList Z [0.0])) ZeroIdx

$ emptyLoop

31 / 1

Accelerate + streams - Take 2 conclusion

I Essentially a sub-language for sequences.
I Many open questions:

I Surface language with sharing recovery.
I Should be easy enough.

I More stream operations.
I Scan, filter.

I Generalize to chunk size > 1.
I Treat scalars (fixed-buffer) different from non-scalars

(dynamic buffer) in loop context.
I Variable number of elements produced, loops become dataflow

networks.

I Nested data parallelism.
I Lifted loops.
I Nested loops.

32 / 1

Conclusion

I For GPUs, streaming is a necessity.
I Language-integrated streaming is preferable in high-level

languages.

I Language-integrated first-class streaming is all or nothing.
I Nothing is a stream or everything is a stream.
I NESL: Everything is lifted to sequence space.
I Accelerate: Streams are confined to a sub-language.

I Closed non-suspendable loop. No communication across loops.

I Data parallel streaming feasible in practice?
I Perhaps, but difficult to get right.
I No benchmarks yet.

33 / 1

