Themselves

Thomas Sutton
»7 November 2013

 The code this talk is about can be found at
<https://github.com/thsutton/fca/>.

* |t's pretty horrible as of 1/12/2013, but I'll be
improving it over the coming weeks.

https://github.com/thsutton/fca

Caveats

* I'm a pretty bad programmer and this is a talk
about some code | wrote.

* I'm pretty bad at mathematics and this talk is me
explaining some mathematics.

A long time ago...

* About 10 years ago | visited a branch of the Co-op
Bookshop quite regularly and often purchased a
DOOK.

e One of them was this:

Introduction to
Lattices and Order
Segond EQitions -

Alas

“Maths is hard!”

— Me

But!

Chapter 3 is applied.

T Sort of.

3

Formal Concept Analysis

Hierarchies occur often both within mathematics and in the ‘real” world
and the theory of ordered sets and lattices provides a natural setting in
which to discuss and analyse them. In this chapter we take a brief
excursion into formal concept analysis in order to get a feel for the
potential of lattice theory in the analysis of hierarchies of concepts.

Contexts and their concepts

3.1 What is a concept? This would appear to be a question for
philosophers rather than for mathematicians. Indeed, traditional phil-
osophy’s answer provides us with the basis for our formal definition. A
concept is considered to be determined by its extent and its intent: the
extent consists of all objects belonging to the concept (as the reader
belongs to the concept ‘living person’) while the intent is the collection
of all attributes shared by the objects (as all living persons share the
attribute ‘can breathe’). As it is often difficult to list all the objects
belonging to a concept and usually impossible to list all its attributes,
it is natural to work within a specific context in which the objects and
attributes are fixed.

Formal Concept Analysis

 Formal concept analysis is a mathematical
formalism which analyses the data in a context

and attempts to extract the concepts embodied
within that data.

* Relating it to completely unrelated technigues for
pourely intuitive reasons, formal concept analysis
might be thought of as the love child of decision
tree learning and k-means clustering.

Context

A context is a structure which relates a set of objects with
a set of attributes.

Formally, a context is a triple:
(G,M,])
G (from gegenstdnde) is a set of objects;
M (from merkmale) is a set of attributes; and

| € (GXM) is the relation linking elements of G to elements
of M.

Concepts

* A concept (with respect to some context) is a pair
of sets:

(AcG,BCM)

e A (the extent) is the set of all objects which have all
the attributes in B; and vaeG.acAe(vbeB.b(a))

* B (the intent) is the set of all attributes which apply
to all objects in A. vbeM.beBe(vacA.b(a))

Concepts

 \We can derive a concept from either a set of
objects or a set of attributes with two maps:

* .. A~»B takes a set of objects to all the attributes
which apply to all those objects.

* . B~A takes a set of attributes to all the objects
which have all those attributes.

Concepts

* |terating these two maps allow us to derive a
concept from any old set of objects or attributes:

* The set A of objects determines a concept:
(AH, AJ)
 [he set B of attributes determines a concept:

(B.8")

Example time!

Name

Frult

Colour

Pink Lady
Granny Smith
Golden Delicious
Red Delicious
Lemon
Orange
Mandarin

Lime

Red

Green
Yellow
Red
Yellow
Orange
Orange

Green

Citrus
Citrus
Citrus
Citrus

Fruit Context

PL v 4
GS 4 4
GD 4 4
RD v 4
Le 4

O
<
< N NS

Li 4

Cr

ta

Cg

GD

Cy

L1

tc CO

) () 0

Graph of | for the fruit context

Example T

Name cr cg cy co ta tc

X = {0} PL v
GS v v

X' ={co,ic} GD v v
RD v v

X" = {O,M) Le v v
0 v Y

(X", X) = ({O,M},{co,tc}) M N
i v v

-xample 2

mﬂ cg cy co ta tc
PL 4 v

Y = {cr}
GS v v
Y’ = {PL,RD} GD ¢
RD v v
Y” = {cr, ta} Le v v
O v oY
(Y’, Y”) = ({PL,RD},{crta}) M v v
Li v v

Whither Lattices & Order?

e Lattice are structure which arises from a set of objects
and an ordering on them. They are kinda sorta partially
ordered sets which meet some additional criteria:

<S,<>

o Example: any powerset P(X) with the ¢ relation forms a
lattice.

* Another example: the set of concepts of any context
form a lattice!

Concept Lattices

* A set of concepts form a lattice in two equivalent
ways: based on extents or based on intents.

(A.B)<(A,B) oA CA,

(A,B,)<(A,B,) < B, 2B

1 2

e This should hopefully make sense? A concept is
“smaller” iff it has fewer (of the same) objects iff it
has more (of the same) attributes.

Wither Functional
Programming’?

* | was starting to loose interest, even with chapter
full of concepts | could almost get a handle on
(excuse the pun) until | got to page 76.

3.14 An algorithm for drawing concept lattices

 And it’s a fairly simple algorithm too!

76 Formal concept analysis

3.14 An algorithm for drawing concept lattices. Assume we have the
cross-table of a context with the object set G down the side and the
attribute set M across the top. The following instructions will generate
a list of the extents of all concepts of the context in an order which is
convenient for drawing the lattice of all concepts.

Step 1. Find all extents of the concepts of the context (G, M, I).

(1.1) Draw up a table with two columns headed Attributes and Extents.
Leave the first cell of the Attributes column empty and write (& in the
first cell of the Extents column.

(1.2) Find a maximal attribute-extent, say m’.

(1.2.1) If the set m' is not already in the Extents column, add the row
[m | m'] to the table. Intersect the set m’ with all previous
extents in the Extents column. Add these intersections to the
Extents column (unless they are already in the list) and leave the
corresponding cells in the Attribute column empty.

(1.2.2) If the set m' is already in the Extents column, add the label m to
the attribute cell of the row where m' previously occurred.
(1.3) Delete the column below m from the table.
(1.4) If the last column has been deleted, stop, otherwise return to (1.2).
Step 2. Draw the diagram with m and m’ labels.

Start at the top of the diagram with one point labelled G. Work down
the list of Extents in the table from Step 1. For each set S in the list, add
an appropriately positioned new point to the diagram. Below the point

! ay

* Ty - ™) ™ n s v vr 2 4 - - - " ™ ™) ™

A. Initialise a table with one row [| G] to hold the concept-extents.

B. Loop: choose a maximal attribute-extent m’
1. It m’is already in the table, add m to that row’s |label.

2. Otherwise: add a new row [m | m’] and a new row for the intersection of m’
with each previous rows (don't label these; skip any duplicates).

3. Delete m from the inputs.

C.Draw a diagram.
4. Eachrow is a node.
5. Label each node corresponding to an attribute-extent.

6. Label each node corresponding to the smallest extent containing each
object.

Example

PL v v 1 GD,GS,RD,PL,Le,O,M,Li
GS v v 2 cy GD,Le
GD v v 3 cg GS,Li
RD v v 4 ta GD,GS,RD,PL
Le v v 9 GD
O v v 0 GS
M v v 7 Cr RD,PL
i v v 8 tc L e,O,M,Li
9 e
10 |
11 CO O,M

N
S

Example

Bullding things In
Haskell

FYIl: This is where the "bad programmer” bit comes in.

Overview

Using cassava to read input in CSV.
Using containers and vectors to data structures.

Using most brute-force-y and least efficient
approach to every problem.

Produces dot output which is rendered with
Graphviz.

Straight-forward
implementation

parseContext :: Vector (Vector Name) -> (Context, Map ObjId Name, Map AttrId Name)
buildAETable :: Context -> AETable

generateGraph :: AETable -=- ~ Context lattice table.
-> Map ObjId Name -- * Map from object ID to name.
-> Map AttrId Name -- “ Map from attribute ID to name.
-> Text

main :: IO ()

input <- BL.getContents
case decode False input of
Left err -> error err
Right csv -> let (ctx, omap, amap) = parseContext csv
table = buildAETable ctx
graph = generateGraph table omap amap
in do
T.putStrLn graph

Core Algorithm

-- | Construct the attribute/extent table of a context.
buildAETable :: Context -> AETable
buildAETable ctx = let g = V.foldl (\s v-> S.union s § snd v) S.empty ctx
t = snd § work ctx § V.singleton (S.empty, g)
in t V.++ V.singleton (S.empty, S.empty)
where
work :: Context -> AETable -> (Context, AETable)
work ctx table = maybe (ctx, table)
(\(a, ctx') -> work ctx' $§ insertAttr a table)

(chooseMax ctx)

-- | Select the "maximal" attribute in the context.

chooseMax :: Context -> Maybe (Attribute, Context)

chooseMax ctx = fmap (flip vselect ctx) § V.findIndex (f ctx) ctx
where

f ctx a = maybe True (const False) §
V.findIndex (\b-> (snd a) "“S.isProperSubsetOf~ (snd b)) ctx

-- | Insert an attribute/extent into the table.

insertAttr :: Attribute -> AETable -> AETable

insertAttr (attr, ext) table =

case V.findIndex (\r -> ext == snd r) table of

-—- Add the label to the existing row.
Just j -> labelAttr j attr table
-- Add a new row to the table.
Nothing -> addIntersects attr ext $§ extendTable attr ext table

| OLWUT

-- [Find the smallest set containing an element. NB: partial!
smallestWith :: Ord e => e -> Set (Set e) -> Set e
smallestWith e ss = let ss' = S.filter (S.member e) ss
in head $§ sortBy myCmp $ S.toList ss'
where myCmp x y = compare (S.size x) (S.size y)

-- | Filter the elements @e@ of @s@ by whether or not @m@ maps @e@ to @s@.
filterSetByMap :: Ord i => Set i -> Map i (Set i) -> Set i
filterSetByMap s m = S.filter (\e -> (m M.! e) == s) s

- / Find nodes which cover another.

covering :: Set Int -- “ Extent to cover.
-> [(Int, (Set Int, Set Int))] -- ~ Candidates.
-> [(Int, (Set Int, Set Int))]

covering s ss = let ss' = filter (myCmp (1, (S.empty,s))) ss

in filter (\¢ -> null § filter ((flip myCmp c)) ss') ss'
where myCmp = \(_,(_,s)) (_,(_,t)) -> s “S.isProperSubsetOf™ t

Frult Lattice

People In WIKIDB

WIkIDB is a set of DBs extracted from wikipedia metadata.
Extracted people and ~107 “types” applied to them.

CSV Input DOT Output

1000 1000 348
5000 5000 474
“Complete" 72923 584

Data sets are the first n people which were convenient to
extract from WikiDB data file.

999 Persons from WIkiIDB

5000 Persons from WIkIDB

72923 Persons from WIkiIDB

Improvements

1. Investigate better data structures. Set is probably not the best
choice!

2. Read some RDF format or other instead of crazy CSV.

3. Space leaks!
4. Replace horrible brute-force code with smarter approaches.

5. Command line arguments to control output. Large graphs are
utterly unreadable.

 Example of (4): calculate the graph for the whole lattice rather
than the set of edges for each node.

References

 B.A. Davey, H.A. Priestly. Introduction
to Lattices and Order (2nd). CUP. e

Lattices and Order

 Wikipedia

