
What have I learned about SAT?
or Tales of an NP-complete but useful problem

Thomas Sewell

NICTA

26th August 2013

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 1 / 11



Overview

1 SAT

2 Demo of CDCL
3 Modern SAT

I Competition
I Pruning
I Oscillation and Restarts
I Glue
I Simplification and Rewriting

4 SAT with proofs
I Why?
I RUP & DRUP
I The future?

5 Why?

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 2 / 11



CSAT

Survey: what fraction of the audience can name an NP-complete problem.

What fraction can give some evidence?

The Circuit Satisfiability problem CSAT is: given a directed acyclic circuit
(with, say, and/or/not gates), with one output, does there exist a
combination of inputs which cause it to output high?

If you beleive that all problems in NP can be checked by a circuit
connected in a clocked cycle to registers, then CSAT is NP-complete.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 3 / 11



CSAT

Survey: what fraction of the audience can name an NP-complete problem.

What fraction can give some evidence?

The Circuit Satisfiability problem CSAT is: given a directed acyclic circuit
(with, say, and/or/not gates), with one output, does there exist a
combination of inputs which cause it to output high?

If you beleive that all problems in NP can be checked by a circuit
connected in a clocked cycle to registers, then CSAT is NP-complete.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 3 / 11



SAT

SAT (also called CNF-SAT) specialises CSAT to problems in CNF:
conjunctive normal form or clausal normal form.

The ciruit is a collection of clauses that are all true (conjoined), and each
of which is a disjunction of (possibly negated) variables.

E.g. x1 ∨ x2 ∨ ¬x3, x2 ∨ ¬x4, x3 ∨ x4.

The DPLL algorithm (Davis, Putnam, Logemann, Loveland) is a complete
algorithm for deciding satisfiability. It’s based on branching and
backtracking when necessary.

(time for an aside)

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 4 / 11



SAT

SAT (also called CNF-SAT) specialises CSAT to problems in CNF:
conjunctive normal form or clausal normal form.

The ciruit is a collection of clauses that are all true (conjoined), and each
of which is a disjunction of (possibly negated) variables.

E.g. x1 ∨ x2 ∨ ¬x3, x2 ∨ ¬x4, x3 ∨ x4.

The DPLL algorithm (Davis, Putnam, Logemann, Loveland) is a complete
algorithm for deciding satisfiability. It’s based on branching and
backtracking when necessary.

(time for an aside)

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 4 / 11



DPLL

In case you didn’t get it, the DPLL algorithm:

Propagate obvious information:
I x1 + (¬x1 ∨ x3) ⇒ x3.
I x1 + (x1 ∨ x4) ⇒ nothing.
I This is called unit propagation.

If you run out of clauses, the unit clauses you have are a satisfying
assignment sat.

If you learn the empty clause (from x1,¬x1), the problem is
unsatisfiable unsat.

If you can’t propagate, pick a variable and consider both cases
x1,¬x1.

I If sat found on branch, done.
I If unsat on branch, backtrack to other case.
I If unsat on both branches, unsat.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 5 / 11



What’s the big deal about SAT?

Why is SAT a big deal?

can encode a lot of interesting problems.

can solve huge problems.

After the discovery of the CDCL approach in the 90s, realistic problem
sizes shot up from thousands to millions of variables.

That’s big enough to reason about CPUs.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 6 / 11



CDCL

Conflict driven clause learning improves on backtracking in DPLL. The
trick is:

Remember why you know everything.
I starting clauses.
I branching choices x1 or ¬x1.
I derived clauses (unit propagation).

If we learn the empty clause, look at its parents.
I choices were x1,¬x2, x12.
I learn new conflict clause ¬x1 ∨ x2 ∨ ¬x12.

This optimisation hugely decreases the cost of backtracking.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 7 / 11



Modern SAT

What I’ve managed to learn about the state of the art:

Competitions: the SAT competition has dozens of entrants in any
given year, and the pace of progress is impressive.

Fast propagation: modern SAT solvers are built on fancy clause
propagation implementations.

Locality: solvers try to make decisions ‘near’ previous decisions.

Phases: solvers alternate between sat-focused and unsat-focused
phases. Phase-saving and rapid restarts are apparently important.

Pruning: clause propagation time grows with the clause database.
Pruning the database speeds things up.

Glue: pruning to “glue” clauses, which have a linear blocks distance
of 2, works well. Whatever that means.

Rewriting: preprocessing the problem into an equisatisfiable problem.
Valuable especially as a first step.

WARNING: this may be wildly inaccurate.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 8 / 11



SAT with Proofs

So that is all pretty useful but . . . do you trust it?

The SAT competition comes with a proofs category. Solvers augment
unsat judgements with some kind of guidance for a checker.

Some solvers produce full resolution proofs.

The RUP format (reverse unit propagation) of a proof is a series of clauses
that can be learned by unit propagation only. The conflict clauses of a
CDCL solver in the order they are learned form a RUP proof.

The DRUP format adds clause deletion, to speed up unit propagation.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 9 / 11



SAT with Proofs

So that is all pretty useful but . . . do you trust it?

The SAT competition comes with a proofs category. Solvers augment
unsat judgements with some kind of guidance for a checker.

Some solvers produce full resolution proofs.

The RUP format (reverse unit propagation) of a proof is a series of clauses
that can be learned by unit propagation only. The conflict clauses of a
CDCL solver in the order they are learned form a RUP proof.

The DRUP format adds clause deletion, to speed up unit propagation.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 9 / 11



SAT with Rewriting and Proofs

What if we want both rewriting and proofs?

The previous proof formats all assume the solver and checker share the
problem representation and strategy. If the problem has been rewritten,
that isn’t so true any more.

What if we put more steps between the checker and solver?

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 10 / 11



SAT with Rewriting and Proofs

What if we want both rewriting and proofs?

The previous proof formats all assume the solver and checker share the
problem representation and strategy. If the problem has been rewritten,
that isn’t so true any more.

What if we put more steps between the checker and solver?

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 10 / 11



Why

Why have I subjected you all to this rambling?

I have some SMT proofs I’d dearly like to replay in Isabelle/HOL or HOL4.
This can be thought of as a generalisation of replaying SAT with rewriting
only:

the rewriting step is bigger and more complicated.

some facts come out of nowhere (the SMT theory engine).

the final checker is really really slow.

That is all.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 11 / 11



Why

Why have I subjected you all to this rambling?

I have some SMT proofs I’d dearly like to replay in Isabelle/HOL or HOL4.
This can be thought of as a generalisation of replaying SAT with rewriting
only:

the rewriting step is bigger and more complicated.

some facts come out of nowhere (the SMT theory engine).

the final checker is really really slow.

That is all.

Thomas Sewell (NICTA) What have I learned about SAT? 26th August 2013 11 / 11


