
ACCELERATE AND THE OUTSIDE WORLD:
INTERFACING ACCELERATE WITH LOW-LEVEL

CUDA
Robert Clifton-Everest

UNSW
robertce@cse.unsw.edu.au

Tuesday, 30 July 13

mailto:robertce@cse.unsw.edu.au
mailto:robertce@cse.unsw.edu.au

ACCELERATE IN A NUTSHELL
• Embedded language for high-performance array computations
• Well known for its CUDA backend
• Array computations are of type Acc and scalar computations are

of type Exp

• This function signature tells you most of what you need to know

map :: (Shape ix, Elt a, Elt b)
 => (Exp a -> Exp b)
 -> Acc (Array ix a)
 -> Acc (Array ix b)

Tuesday, 30 July 13

DOES IT WORK WITH OTHER
GPGPU FRAMEWORKS?

• Up till now, no.

• Now, kinda.

Tuesday, 30 July 13

TWO DISTINCT PROBLEMS

Accelerate CUDA C

Problem 1

The direction of the arrow corresponds to function calls

Tuesday, 30 July 13

TWO DISTINCT PROBLEMS

Accelerate CUDA C

Problem 2

The direction of the arrow corresponds to function calls

Tuesday, 30 July 13

EXAMPLE FOR PROBLEM 1

• Smoothlife

• Conway’s game of life
generalised to a continuous
domain

Tuesday, 30 July 13

•Relies on a Fast Fourier Transform

•We could have written our own FFT (actually,
Trevor did), or...

•We take advantage of the cuFFT library

Tuesday, 30 July 13

CUFFT gives us C functions like this
cufftResult cufftExecC2C(cufftHandle *plan, cufftComplex *idata,
 cufftComplex *odata, int direction);

• We can import this in to Haskell easily enough

• But how can we call this function from within an accelerate
computation and give it the device pointers it needs?

foreign import cufftExecC2C ...

Tuesday, 30 July 13

We add this operation
foreignAcc :: (Arrays arr, Arrays res, Foreign ff)
 => ff arr res -- The foreign function
 -> (Acc arr -> Acc res) -- The pure equivalent
 -> Acc arr
 -> Acc res

Tuesday, 30 July 13

We add this operation
foreignAcc :: (Arrays arr, Arrays res, Foreign ff)
 => ff arr res -- The foreign function
 -> (Acc arr -> Acc res) -- The pure equivalent
 -> Acc arr
 -> Acc res

class Typeable2 f => Foreign f where
 ...

Backends provide implementations of this class

Tuesday, 30 July 13

newtype CuForeignAcc args results
 = CuForeignAcc (args -> CIO results)
 deriving (Typeable)

instance Foreign CuForeignAcc where
 ...

So for the CUDA backend

CIO is an abstract monad giving us access to functions like these

-- Allocate a new array
allocateArray :: (Shape dim, Elt e) => dim -> CIO (Array dim e)

-- Get the device pointers associated with an array
devicePtrsOfArray :: Array sh e -> CIO (DevicePtrs (EltRepr e))

-- Push and pull data from the device
peekArray, pokeArray :: (Shape dim, Elt e) => Array dim e -> CIO ()

Tuesday, 30 July 13

doFFT :: Acc (Array DIM2 Complex)
 -> Acc (Array DIM2 Complex)
doFFT arr = foreignAcc (CuForeign foreignFFT)
 pureFFT
 arr
 where
 pureFFT = ... a slow but pure Accelerate FFT ...

 foreignFFT :: Array DIM2 Complex -> CIO (Array DIM2 Complex)
 foreignFFT arr = do
 hndl <- ... do some initialisation of cufft ...
 out <- allocateArray (shape arr)
 ((), DevicePtr idata) <- devicePtrsOfArray arr
 ((), DevicePtr odata) <- devicePtrsOfArray out
 liftIO $ cufftExecC2C hndl idata odata 1
 return out

Putting it all together

Tuesday, 30 July 13

PROBLEM 2

• What if we have an existing CUDA C/C++ application and
we want to replace parts of it with Accelerate?

Accelerate CUDA C

Tuesday, 30 July 13

• Vector dot product

• Accelerate code looks like this

• How can we call this from C?

A SIMPLE EXAMPLE

dotp :: Acc (Vector Float)
 -> Acc (Vector Float)
 -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Tuesday, 30 July 13

• First we do this

• When compiled this will generate Dotp.h

{-# LANGUAGE TemplateHaskell #-}
module Dotp where

foreignAccModule

dotp :: Acc (Vector Float)
 -> Acc (Vector Float)
 -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

exportAfun1 ‘dotp

Tuesday, 30 July 13

•Now somewhere in our C program

•First we compile the accelerate program
#include “Dotp.h”

AccHandle hndl;
Program p_dotp;

void init() {
 CUcontext ctx;
 CUdevice dev;
 cuCtxGetCurrent(&ctx);
 cuCtxGetDevice(&dev)

 hndl = accelerateCreate(ctx, dev);
 p_dotp = dotp_compile(hndl);
}

Tuesday, 30 July 13

•Then we can call it

float dotp(float *x, float* y, int n) {
 int sh[] = { n };
 ResultArray res;
 dotp_run(p_dotp, &a, sh, &b, sh, &res);

 float* out;
 float ret;
 getDevicePtrs(res, &out);
 cudaMemcpy(&ret, out, sizeof(float), cudaMemcpyDeviceToHost);
 return ret;
}

Tuesday, 30 July 13

QUESTIONS?

Tuesday, 30 July 13

