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ACCELERATE IN A NUTSHELL
• Embedded language for high-performance array computations
• Well known for its CUDA backend
• Array computations are of type Acc and scalar computations are 

of type Exp

• This function signature tells you most of what you need to know

map :: (Shape ix, Elt a, Elt b)
    => (Exp a -> Exp b)
    -> Acc (Array ix a)
    -> Acc (Array ix b) 
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DOES IT WORK WITH OTHER 
GPGPU FRAMEWORKS?

• Up till now, no.

• Now, kinda.
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TWO DISTINCT PROBLEMS

Accelerate CUDA C
 

Problem 1

The direction of the arrow corresponds to function calls
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TWO DISTINCT PROBLEMS

Accelerate CUDA C
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The direction of the arrow corresponds to function calls
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EXAMPLE FOR PROBLEM 1

• Smoothlife

• Conway’s game of life 
generalised to a continuous 
domain
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•Relies on a Fast Fourier Transform

•We could have written our own FFT (actually, 
Trevor did), or...

•We take advantage of the cuFFT library
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CUFFT gives us C functions like this
cufftResult cufftExecC2C(cufftHandle *plan, cufftComplex *idata, 
                         cufftComplex *odata, int direction);

• We can import this in to Haskell easily enough

• But how can we call this function from within an accelerate 
computation and give it the device pointers it needs? 

foreign import cufftExecC2C ...
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We add this operation
foreignAcc :: (Arrays arr, Arrays res, Foreign ff)
           => ff arr res           -- The foreign function
           -> (Acc arr -> Acc res) -- The pure equivalent
           -> Acc arr
           -> Acc res
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We add this operation
foreignAcc :: (Arrays arr, Arrays res, Foreign ff)
           => ff arr res           -- The foreign function
           -> (Acc arr -> Acc res) -- The pure equivalent
           -> Acc arr
           -> Acc res

class Typeable2 f => Foreign f where
  ...

Backends provide implementations of this class
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newtype CuForeignAcc args results 
  = CuForeignAcc (args -> CIO results)
  deriving (Typeable)

instance Foreign CuForeignAcc where
  ...

So for the CUDA backend

CIO is an abstract monad giving us access to functions like these

-- Allocate a new array
allocateArray :: (Shape dim, Elt e) => dim -> CIO (Array dim e)

-- Get the device pointers associated with an array
devicePtrsOfArray :: Array sh e -> CIO (DevicePtrs (EltRepr e))

-- Push and pull data from the device
peekArray, pokeArray :: (Shape dim, Elt e) => Array dim e -> CIO ()
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doFFT :: Acc (Array DIM2 Complex) 
      -> Acc (Array DIM2 Complex)
doFFT arr = foreignAcc (CuForeign foreignFFT)
                       pureFFT        
                       arr
  where
    pureFFT = ... a slow but pure Accelerate FFT ...

    foreignFFT :: Array DIM2 Complex -> CIO (Array DIM2 Complex)
    foreignFFT arr = do
      hndl <- ... do some initialisation of cufft ...
      out <- allocateArray (shape arr)
      ((), DevicePtr idata) <- devicePtrsOfArray arr
      ((), DevicePtr odata) <- devicePtrsOfArray out
      liftIO $ cufftExecC2C hndl idata odata 1
      return out

Putting it all together
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PROBLEM 2

• What if we have an existing CUDA C/C++ application and 
we want to replace parts of it with Accelerate?

Accelerate CUDA C
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• Vector dot product

• Accelerate code looks like this

• How can we call this from C?

A SIMPLE EXAMPLE

dotp :: Acc (Vector Float) 
     -> Acc (Vector Float) 
     -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)
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• First we do this

• When compiled this will generate Dotp.h 

{-# LANGUAGE TemplateHaskell #-}
module Dotp where

foreignAccModule

dotp :: Acc (Vector Float) 
     -> Acc (Vector Float) 
     -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

exportAfun1 ‘dotp
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•Now somewhere in our C program

•First we compile the accelerate program
#include “Dotp.h”

AccHandle hndl;
Program p_dotp;

void init() { 
  CUcontext ctx;
  CUdevice dev;
  cuCtxGetCurrent(&ctx);
  cuCtxGetDevice(&dev)

  hndl = accelerateCreate(ctx, dev);
  p_dotp = dotp_compile(hndl); 
}
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•Then we can call it

float dotp(float *x, float* y, int n) {
  int sh[] = { n };
  ResultArray res;
  dotp_run(p_dotp, &a, sh, &b, sh, &res);
  
  float* out;
  float ret;
  getDevicePtrs(res, &out);
  cudaMemcpy(&ret, out, sizeof(float), cudaMemcpyDeviceToHost);
  return ret;
}
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QUESTIONS?
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