ACCELERATE AND THE OUTSIDE WORLD:
INTERFACING ACCELERATE WITH LOW-LEVEL
CUDA

Robert Clifton-Everest
UNSW

robertce@cse.unsw.edu.au



mailto:robertce@cse.unsw.edu.au
mailto:robertce@cse.unsw.edu.au

ACCELERATE IN A NUTSHELL

» Embedded language for high-performance array computations

* Well known for its CUDA backend

* Array computations are of type Acc and scalar computations are
of type ExXp

» This function signature tells you most of what you need to know

map :: (Shape ix, Elt a, Elt b)
=> (Exp a -> Exp b)

-> Acc (Array 1x a)

-> Acc (Array 1ix b)

Tuesday, 30 July 13



DOES [T WORKWITH OTHER
GPGPU FRAMEWORKS!

- Up till now, no.

* Now, kinda.




TWQO DISTINCT PROBLEMS

Problem |

The direction of the arrow corresponds to function calls




TWQO DISTINCT PROBLEMS

Problem 2

The direction of the arrow corresponds to function calls




EXAMPLE FOR PROBLEM |

o
* Smoothlife -

» Conway's game of life
oeneralised to a continuous
domain

E o




S lle—"@nm a Fast Fourier Transform

* We could have written our own FFT (actually,
Trevor did), or...

* We take advantage of the cukr1 library

Tuesday, 30 July 13



CUFFT gives us C functions like this

cufftResult cufftExecC2C(cufftHandle *plan, cufftComplex *idata,
cufftComplex *odata, int direction);
- We can import this in to Haskell easily enough

'foreign import cufftExecC2C ... I

« But how can we call this function from within an accelerate
computation and give It the device pointers it needs!

Tuesday, 30 July 13



VWe add this operation

foreignAcc

->
->
->

(Arrays arr, Arrays res, Foreign ff)

ff arr res ——- The foreign function
(Acc arr -> Acc res) -- The pure equivalent
Acc arr

Acc res

Tuesday, 30 July 13



VWe add this operation

foreignAcc :: (Arrays arr, Arrays res, Foreign ff)
=> ff arr res ——- The foreign function
-> (Acc arr -> Acc res) -- The pure equivalent

-> AcCC arr
-> AcCcC res

Backends provide implementations of this class

class Typeable2 f => Foreign f£f where'

Tuesday, 30 July 13



So for the CUDA backend

newtype CuForeignAcc args results
= CuForeignAcc (args -> CIO results)
deriving (Typeable)

instance Foreign CuForeignAcc where

CIO is an abstract monad giving us access to functions like these

—— Allocate a new array
allocateArray :: (Shape dim, Elt e) => dim -> CIO (Array dim e)

——- Get the device pointers associated with an array
devicePtrsOfArray :: Array sh e -> CIO (DevicePtrs (EltRepr e))

—— Push and pull data from the device
peekArray, pokeArray (Shape dim, Elt e) => Array dim e -> CIO ()

Tuesday, 30 July 13



Putting 1t all together

doFFT :: Acc (Array DIM2 Complex)
-> Acc (Array DIM2 Complex)
doFFT arr = foreignAcc (CuForeign foreignFFT)

purelFFT
arr
where
pureFFT = ... a slow but pure Accelerate FFT
foreignFFT :: Array DIM2 Complex -> CIO (Array DIM2 Complex)
foreignFFT arr = do
hndl <- ... do some initialisation of cufft

out <- allocateArray (shape arr)

((), DevicePtr idata) <- devicePtrsOfArray arr
((), DevicePtr odata) <- devicePtrsOfArray out
1iftIO $ cufftExecC2C hndl idata odata 1
return out

Tuesday, 30 July 13



PROBLEM 2

Accelerate ; i

* What If we have an existing CUDA C/C++ application and
we want to replace parts of it with Accelerate!?

Tuesday, 30 July 13



A SIMPLE EXAMPLE

8 —@leldot product

* Accelerate code looks like this

dotp :: Acc (Vector Float)
-> Acc (Vector Float)
-> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

 How can we call this from !

Tuesday, 30 July 13



* First we do this

{-# LANGUAGE TemplateHaskell #-}
module Dotp where

foreignAccModule

dotp :: Acc (Vector Float)
-> Acc (Vector Float)
—> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

exportAfunl ‘dotp

* When compiled this will generate Dotp.h

Tuesday, 30 July 13



* Now somewhere in our C program

* First we compile the accelerate program

#include “Dotp.h”

AccHandle hndl;
Program p dotp;

void init() {
CUcontext ctx;
CUdevice dev;
cuCtxGetCurrent (&ctx) ;
cuCtxGetDevice(&dev)

hndl = accelerateCreate(ctx, dev);
p dotp = dotp compile(hndl);

Tuesday, 30 July 13



* | hen we can call it

float dotp(float *x, float* y, int n) {
int sh[] = { n };
ResultArray res;
dotp run(p dotp, &a, sh, &b, sh, &res);

float* out;

float ret;

getDevicePtrs(res, &out);

cudaMemcpy (&ret, out, sizeof(float), cudaMemcpyDeviceToHost);
return ret;

Tuesday, 30 July 13



QUESTIONS!




