
SpecConstr: optimising purely functional loops

Amos Robinson

May 30, 2013



Motivation - dot product

The code we want to write

type V = Unboxed.Vector

dotp :: V Int -> V Int -> Int

dotp as bs

= fold (+) 0

$ zipWith (*) as bs



Motivation - dot product

The code we want to run

dotp as bs = go 0 0

where

go i acc

| i > V.length as

= acc

| otherwise

= go (i + 1) (acc + (as!i * bs!i))

No intermediate vectors, no constructors, no allocations: perfect.
(Just pretend they’re not boxed ints...)



Motivation - dot product

The code we get after stream fusion (trust me)

dotp as bs = go (Nothing, 0) 0

where

go (_, i) acc

| i > V.length as

= acc

go (Nothing, i) acc

= go (Just (as!i), i) acc

go (Just a, i) acc

= go (Nothing, i + 1) (acc + (a * bs!i))

All those allocations!



Motivation - dot product

The code we get after stream fusion (trust me)

dotp as bs = go (Nothing, 0) 0

where

go (_, i) acc

| i > V.length as

= acc

go (Nothing, i) acc

= go (Just (as!i), i) acc

go (Just a, i) acc

= go (Nothing, i + 1) (acc + (a * bs!i))

Only to be unboxed and scrutinised immediately. What a waste.



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go (Nothing, 0) 0

where

go (_, i) acc

| i > V.length as = acc

go (Nothing, i) acc = go (Just (as!i), i) acc

go (Just a, i) acc = go (Nothing, i+1) (acc + (a*bs!i))

Start by looking at the first recursive call. We can specialise the
function for that particular call pattern.



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go (Just (as!i), i) acc

go (_, i) acc

| i > V.length as = acc

go (Nothing, i) acc = go (Just (as!i), i) acc

go (Just a, i) acc = go’1 (i + 1) (acc + (a * bs!i))

Specialise on go (Nothing, x) y = go’1 x y



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go (Just (as!i), i) acc

go (_, i) acc

| i > V.length as = acc

go (Nothing, i) acc = go (Just (as!i), i) acc

go (Just a, i) acc = go’1 (i + 1) (acc + (a * bs!i))

Now look at the call in the new function. We can specialise on
that pattern, too!



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go’2 (as!i) i acc

go’2 a i acc = case i > V.length as of

True -> acc

False -> go’1 (i + 1) (acc + (a * bs!i))

go (_, i) acc

| i > V.length as = acc

go (Nothing, i) acc = go (Just (as!i), i) acc

go (Just a, i) acc = go’1 (i + 1) (acc + (a * bs!i))

Specialise on go (Just x, y) z = go’2 x y z



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go’2 (as!i) i acc

go’2 a i acc = case i > V.length as of

True -> acc

False -> go’1 (i + 1) (acc + (a * bs!i))

go (_, i) acc

| i > V.length as = acc

go (Nothing, i) acc = go (Just (as!i), i) acc

go (Just a, i) acc = go’1 (i + 1) (acc + (a * bs!i))

Now it turns out that go isn’t even mentioned any more. Get rid
of it.



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go’2 (as!i) i acc

go’2 a i acc = case i > V.length as of

True -> acc

False -> go’1 (i + 1) (acc + (a * bs!i))

These two are mutually recursive, but we can still inline go’2 into
go’1.



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> case i > V.length as of

True -> acc

False -> go’1 (i + 1) (acc + (as!i * bs!i))

The case of i > V.length as is already inside the False branch of
a case of the same expression, we can remove the case altogether.



Motivation - dot product

Let us try specialising this by hand.

dotp as bs = go’1 0 0

where

go’1 i acc = case i > V.length as of

True -> acc

False -> go’1 (i + 1) (acc + (as!i * bs!i))

Which was what we wanted.



GHC pipeline (not to scale)

We now have some intuition about SpecConstr. How does it fit in
with the rest of GHC’s optimisations?

Parse :: String → Source
Typecheck :: Source → Source
Desugar :: Source → Core
Simplify :: Core → Core
SpecConstr :: Core → Core
Simplify × 50 :: Core → Core
Code generation :: Core → Object



GHC pipeline (not to scale)

We now have some intuition about SpecConstr. How does it fit in
with the rest of GHC’s optimisations?

Parse :: String → Source
Typecheck :: Source → Source
Desugar :: Source → Core
Simplify :: Core → Core
SpecConstr :: Core → Core
Simplify × 50 :: Core → Core
Code generation :: Core → Object

Focus on these parts.



Simplifier

The simplifier does a bunch of transforms in a single pass:

I Case of constructor

I Inlining

I Rewrite rules

I Let floating

I Beta reduction

and many more, but these are the most interesting for us



Simplifier

Case of constructor

case (Just a) of

Nothing -> x

Just a’ -> y

==>

let a’ = a

in y

When the scrutinee of a case is known to be a constructor, we can
remove the case altogether.



Simplifier

Inlining

zipWith f xs ys

= unstream $ zipWith_S f

(stream xs) (stream ys)

...

zipWith (*) as bs

==>

...

unstream $ zipWith_S (*)

(stream as) (stream bs)

Move the definition of a function into places it is used



Simplifier

Rewrite rules

{-# RULES stream (unstream xs) = xs #-}

fold_S (+) $ stream $ unstream $

zipWith_S (*) (stream as) (stream bs)

==>

...

fold_S (+) $

zipWith_S (*) (stream as) (stream bs)

Replace left-hand side with right, anywhere



SpecConstr, actually

The basic idea:

I Find calls with constructors

I Create new functions for that call pattern

I Add rewrite rules for each call pattern

I Let the simplifier do the rest

enumFromTo f t acc

= case f > t of

True -> acc

False -> enumFromTo f (t-1) (t : acc)

(Silly example.)



SpecConstr, actually

The basic idea:

I Find calls with constructors

I Create new functions for that call pattern

I Add rewrite rules for each call pattern

I Let the simplifier do the rest

enumFromTo f t acc

= case f > t of

True -> acc

False -> enumFromTo’1 f (t-1) t acc

enumFromTo’1 f t cons acc

= case f > t of

True -> acc

False -> enumFromTo f (t-1) (t : cons : acc)

Not only will this diverge, it’s not even decreasing allocations!



SpecConstr, actually

The basic idea:

I Find calls with constructors on scrutinised parameters

I Create new functions for that call pattern

I Add rewrite rules for each call pattern

I Let the simplifier do the rest

enumFromTo f t acc

= case f > t of

True -> acc

False -> enumFromTo f (t-1) (t : acc)



SpecConstr, actually

Looking through bindings

silly2 xs’ = case xs’ of

[] -> []

(x:xs) -> if x > 10

then (do1 (x:xs), do2 (x:xs)) : silly2 (x:xs)

else silly2 xs

Common subexpression elimination (CSE) will probably rewrite
those x:xs into xs’.



SpecConstr, actually

Looking through bindings

silly2 xs’ = case xs’ of

[] -> []

(x:xs) -> if x > 10

then (do1 xs’, do2 xs’) : silly2 xs’

else silly2 xs

But now it’s not obvious that silly2 xs’ is a valid call pattern.
No matter: keep track of the bound variables and their values. If
we know xs’=x:xs, we can still specialise.



SpecConstr, actually

Reboxing

silly2 xs’ = case xs’ of

[] -> []

(x:xs) -> if x > 10

then (do1 xs’, do2 xs’) : silly2 xs’

else silly2 xs

Now we’ll specialise on silly2 (x:xs) = silly2’1 x xs.



SpecConstr, actually

Reboxing

silly2 xs’ = case xs’ of

[] -> []

(x:xs) -> if x > 10

then (do1 xs’, do2 xs’) : silly2 xs’

else silly2 xs

silly2’1 x xs

= if x > 10

then (do1 (x:xs), do2 (x:xs)) : silly2’1 x xs

else silly2 xs

Hey! Now we’re actually doing more allocations.
The moral: don’t specialise on a bound variable if the variable is
used elsewhere.



ForceSpecConstr

SpecConstr puts a limit on the number of specialisations, to
prevent code blowup.

unstream :: Stream a -> [a]

unstream (Stream f s) = go ForceSpecConstr s

where

go ForceSpecConstr s

= case f s of

Done -> []

Skip s’ -> go ForceSpecConstr s’

Yield a s’ -> a : go ForceSpecConstr s’

But with stream fusion, we want to specialise everything no matter
what. Damn the consequences!



End

end.


