GPGPU Programming in Haskell
with Accelerate

Trevor L. McDonell

@tlimcdonell
tmcdonell@cse.unsw.edu.au

https://github.com/AccelerateHS

mailto:tmcdonell@cse.unsw.edu.au
https://github.com/AccelerateHS

Context

« YOW Lambdadam is coming up: May 16-17, Brisbane

 buuut... | need to prepare a talk for it:
- Split into 30 min + 1.5 hr session
- Looking for feedback on topics to include / focus on / skip / etc.
- Particularly if you have tried to use Accelerate before

- Especially if you have tried and failed

What 1s GPGPU Programming?

« General Purpose Programming on Graphics Processing Units (GPUs)

 Using your graphics card for something other than playing games

- GPUs have many more cores than a CPU
- GeForce GTX Titan
- 2688 cores @ 837 MHz

- 6 GB memory @ 288 GB/s

What 1s GPGPU Programming?

- Main differences:
- Single program multiple data (SPMD / SIMD), or just data-parallelism

- All the cores run the same program, but on different data

- We can’t program these in the same way as a CPU
- Different instruction sets: can’t run a Haskell program directly

- More restrictive hardware designs, limited control structures

- GPUs have their own memory

- Data has to be explicitly moved back and forth

Accelerate

 Accelerate is a Domain-Specific Language for GPU programming

A

program

Haskell/Accelerate

_

R —

Transform Accelerate
program into CUDA program

Copy result back to Haskell

- Y CUDA codeJ

Compile with NVIDIA’s
compiler & load onto the GPU

Accelerate

 Accelerate is a Domain-Specific Language for GPU programming
- This process may happen several times during program execution

- Code and data fragments get cached and reused

- An Accelerate program is a Haskell program the generates a CUDA program
- However, in many respects this still looks like a Haskell program

- Shares various concepts with Repa, a Haskell array library for CPUs

Accelerate

* Accelerate computations take place on arrays

- Parallelism is introduced in the form of collective operations over arrays

[]
—_—> Accelerate s
Arrays in —————— computation ! Arrays out
—> | v)

=

 Arrays have two type parameters

data Array sh e

- The shape of the array, or dimensionality

- The element type of the array: Int, Float, etc.

data Z
Shapes data tail :. head

Z
tail :.

head

- Shapes determine the dimensions of the array and the type of the index
- Z represents a rank-zero array (singleton array with one element)

- (:.) increases the rank by adding a new dimension on the right

« Examples:
- One-dimensional array (vector) indexed by Int: (Z :. Int)

- Two-dimensional array, indexed by Int: (Z .. Int :. Int)

 This style is used at both the type and value level.

sh ::

Z :. Int
sh = Z :

:. 10

data Z = Z

ShapeS data tail :. head = tail :. head
» We have some handy synonyms as well:

type DIMO = Z

type DIM1 = DIMO :. Int

type DIM2 = DIM1 :. Int

type DIM3 = DIM2 :. Int

-- and so on...
type Scalar e = Array DIMO e
type Vector e = Array DIM1 e

Arrays

data Array sh e

« Supported array element types are members of the E1t class:

- ()

- Int, Int32, Int64, Word, Word32, Word64...
- Float, Double

- Char

- Bool

- Tuples up to 9-tuples of these, including nested tuples

- Note that Array itself is not an allowable element type. There are no nested

arrays in Accelerate, regular arrays only!

Arrays

- Create an array from a list:

data Array sh e

fromList

:: (Shape sh, E1t e) => sh -> [e] -> Array sh e

- Generates a multidimensional array by consuming elements from the list
and adding them to the array in row-major order

« Example:

ghci> fromList (Z:.10) [1..10]

- Defaulting does not apply, because
Shape is not a standard class

<interactive>:3:1:

No instance for (Shape (Z :. head®))

arising from a use of ~fromList'
The type variable "head@' is ambiguous
Possible fix: add a type signature that fixes these type
Note: there is a potential instance available:

instance Shape sh => Shape (sh :. Int)

-- Defined in "Data.Array.Accelerate.Array.Sugar'

Possible fix: add an dne+---- 2 (2
Number 1 tip: 1

< Add type signatures
“10

S ambiguous

Possible fix: add a type signature that fixes these type
Note: there are several potential instances:

instance Num Double -- Defined in "GHC.Float'

instance Num Float -- Defined in "GHC.Float'

instance Integral a => Num (GHC.Real.Ratio a)

-- Defined in "GHC.Real'

...plus 12 others

In the second argument of “(:.)', namely "10°

T . bl 2 ol et ttmamimd o C N Comnmmnl 2 1 I, [=7 . 1AaNn\1!

Arrays

- Create an array from a list:

data Array sh e

Array (Z :.

> fromList (Z:.10) [1..10]

:: Vector Float
10) [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0]

- Multidimensional arrays are similar:

- Elements are filled along the right-most dimension first

Array (Z :.

> fromList (Z:.3:.5) [1..]
.. 5) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

:: Array DIM2 Int

I 2 3 4 5
6 7 8 9 10
Il 12 I3 14 15

Arrays

* Array indices start counting from zero

data Array sh e

12

> let mat = fromList (Z:.3:.5) [1..]
> indexArray mat (Z:.2:.1)

:: Array DIM2 Int

I 2 3 4 5
6 7 8 9 10
|l 12 I3 |4 15

Arrays data Array sh e

 Similarly, an array of (possibly nested) tuples:

- This is just a trick: internally converted into a tuple of arrays

> fromList (Z:.2:.3) $ P.zip [1..] ['a'..] :: Array DIM2 (Int,Char)
Ar‘r\ay (Z . 2 . 3) [(1,'a'),(Z,'b'),(3,'c'),(4,'d'),(5,'e'),(6j'-F')]

Data. Array.Accelerate

* Need to import both the base library as well as a backend
- There is also an interpreter available for testing

- Runs without using the GPU (much more slowly of course)

import Prelude as P
import Data.Array.Accelerate as A
import Data.Array.Accelerate.CUDA as CUDA

Data. Array.Accelerate

 To actually run an Accelerate computation:

run :: Arrays a => Acc a -> a

- Run comes from whichever backend we have chosen (CUDA)

- Arrays constrains the result to be an Array, or tuple thereof

« What is Acc?

- This is our DSL type

- A data structure representing a computation that once executed will yield
a result of type ‘a’

Data.Array.Accelerate

+ To get arrays into the Acc world:

use :: Arrays arrays => arrays -> Acc arrays

- This may involve copying data to the GPU

* use injects arrays into our DSL

* run executes the computation to get arrays out

« Using Accelerate focuses on everything in between

Collective Operations

- Example: add one to each element of an array

> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
> run $ A.map (+1) (use arr)
Array (Z :. 3 :. 5) [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

- What is the type of map?

map :: (Shape sh, Elt a, Elt b)
=> (Exp a -> Exp b)
-> Acc (Array sh a)
-> Acc (Array sh b)

A Stratified Language

- Accelerate is split into two worlds: Acc and Exp
- Acc represents collective operations over instances of Arrays
- Exp is a scalar computation on things of type E1t

 Collective operations in Acc comprise many scalar operations in Exp,
executed in parallel over Arrays

- Scalar operations can not contain collective operations

- This excludes nested data parallelism

Scalar Expressions

« The type class overloading trick is used for standard Haskell classes

(+1) :: (E1t a, IsNum a) => Exp a -> Exp a

- Standard boolean operations are available with slightly different names

- The standard names can not be overloaded

(==*) :: (E1t t, IsScalar t) => Exp t -> Exp t -> Exp Bool
(/=*), (<*), (>*), min, max, (||*), (&&*) -- and so on...

« Conditionals

- Use sparingly: leads to SIMD divergence

(?) :: E1t t => Exp Bool -> (Exp t, Exp t) -> Exp t

Scalar Expressions

 Bring a Haskell value into Exp land

constant :: Elt e -> e -> Exp e

- Lift an expression into a singleton array

unit :: Exp e -> Acc (Scalar e)

Reductions

- Folding (+) over a vector produces a sum

- The result is a one-element array (scalar). Why?

> let xs = fromList (Z:.10) [1..] :: Vector Int
> run $ A.fold (+) @ (use xs)
Array (Z) [55]

 Fold has an interesting type:

fold :: (Shape sh, Elt a)
=> (Exp a -> Exp a -> Exp a)
-> Exp a
-> Acc (Array (sh:.Int) a)
-> Acc (Array sh a)

Reductions

 Fold occurs over the outer dimension of the array

> let mat = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
> run $ A.fold (+) © (use mat)
Array (Z :. 3) [15,40,65]

Il 12 13 |4 15 65

Reductions

- Is this a left-fold or a right-fold?
- Neither! The fold happens in parallel, tree-like

- Therefore the function must be associative: (Exp a -> Exp a -> Exp a)

- (We pretend that floating point operations are associative, though strictly
speaking they are not)

Stencils

« A 2D convolution...

Permutations

- Forward / backward permutations ...

- Replicate / slice ...

Problem Solving with Accelerate

Example: password “recovery”

MDS Algorithm

* Aim:
- Implement one round of MD5: unsalted, single 512-bit block
- Apply to an array of words
- Compare hashes to some unknown hash

- I.e. standard dictionary attack

 For fun: send me your (low quality) password hashes

- tmcdonell@cse.unsw.edu.au $ md5 -q -s password
5f4dcc3b5aa765d61d8327deb882cf99

mailto:tmcdonell@cse.unsw.edu.au

MDS Algorithm

- Algorithm operates on a 4-word state,

A, B,C,and D A B C 5
« There are 4 x 16 rounds: F, G, H, and | T <« F ,‘fq_m
‘_
v
- M; is a word from the input message M;—>
v
- K; is a constant Ki—
] <<
- <<<s is left rotate, by some constant r; ::';‘

- Each round operates on the 512-bit message W
block, modifying the state

http://en.wikipedia.org/wiki/Md5

http://en.wikipedia.org/wiki/Md5

MDS Algorithm in Accelerate

* Accelerate is a meta programming language
- Use regular Haskell to generate the expression for each step of the round

- Produces an unrolled loop

type ABCD = (Exp Word32, Exp Word32, ...)

md5round :: Acc (Vector Word32) -> ABCD
md5round msg
= P.foldl round (a0,b0,c0,do) [0..64]
where
round :: ABDC -> Int -> ABCD
round (a,b,c,d) i = ...

MDS Algorithm in Accelerate

» The constants k; and r; can be embedded directly

- The simple list lookup would be death in standard Haskell

- Generating the expression need not be performant, only executing it

k :: Int -> Exp Word32
k i = constant (ks P.!! 1)
where
ks = [Oxd76aa478, 0xe8c7b756, 0x242070db, ©xclbdceee

, e o o

M

D5 Algorithm in Accelerate

- The message M is stored as an array, so we need array indexing

- Be wary, arbitrary array indexing can Kill performance...

(!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix -> Exp e

« Get the right word of the message for the given round

m :: Int -> Exp Word32

m i

i < 16 = msg A.! indexl (constant i)

i < 32 = msg A.! indexl (constant ((5*i + 1) "rem 16))

MDS Algorithm in Accelerate

- Finally, the non-linear functions F, G, H, and |

round :: ABDC -> Int -> ABCD
round (a,b,c,d) i
| 1 < 16 = shfl (f b c d)
...

where
shfl x

(d, b + ((a + x + k i+ mdi) “rotateL™ r i), b, c)

(x .&. y) .|. ((complement x) .&. z)

f Xy z

MDS Algorithm in Accelerate

« MD5 applied to a single 16-word vector: no parallelism here

- Lift this operation to an array of n words: stored as a (Z:.16:.n) array

- Store one word per row column, process many words in parallel

- Need to use generate, the most general form of array construction.
Equivalently, the most easily misused (as we will won’t see)

generate :: (Shape sh, Elt e)
=> Exp sh
-> (Exp sh -> Elt e)
-> Acc (Array sh e)

MDS Algorithm in Accelerate

« As always, data layout is important

- Accelerate arrays are stored in row-major order

- CUDA threads work together

- generate uses one thread per element

- For best performance threads need to index adjacent elements of an array

- This only works for m; if all the first letters are adjacent in memory, etc.

STOP: demo time

Problem Solving Accelerate

Hints for when things don't work as you expect

Executing Computations

* run vs. runt

Acc Inside

- We can see the data structure Accelerate generates by omitting ‘run’

- Useful to check if intermediates have been fused away

> let xs = fromList (Z:.10) [1..] :: Vector Int

> A.map (*2) $ A.map (\x -> x mod™ 2 ==* 0 ? (x-2, x+3)) (use xs)
let a@ = use (Array (Z :. 10) [1,2,3,4,5,6,7,8,9,10])

in

map (\x0 -> 2 * (@ ==* (mod (x0, 2)) ? (-2 + x0, 3 + x0))) a0

Embedded Scalars

- Check what & how often code is getting compiled: -ddump-cc

Nested Data-Parallelism

- matrix-vector multiply: using replicate & a higher-dimensional fold

'terations

* Running out of memory: Floyd-Warshall

« Using the (>->) operator

