
Rewrite rules for the Disciplined Disciple Compiler

Amos Robinson

November 15, 2012



Why do we want rewrite rules?

RULES

map f (map g xs) = map (f.g) xs

textToString . stringToText = id

map id xs = xs

map textToString

(map stringToText ["a","b","c"])



Why do we want rewrite rules?

RULES

map f (map g xs) = map (f.g) xs

textToString . stringToText = id

map id xs = xs

map (textToString.stringToText)

["a","b","c"]



Why do we want rewrite rules?

RULES

map f (map g xs) = map (f.g) xs

textToString . stringToText = id

map id xs = xs

map id

["a","b","c"]



Why do we want rewrite rules?

RULES

map f (map g xs) = map (f.g) xs

textToString . stringToText = id

map id xs = xs

["a","b","c"]



But Disciple allows mutation

RULE add0r (x : Int).

addInt x 0 = x

let y = 5 in

let z = addInt y 0 in

let _ = updateInt y 23 in

z

Evaluates to 5.



But Disciple allows mutation - after rewrite

RULE add0r (x : Int).

addInt x 0 = x

let y = 5 in

let z = y in

let _ = updateInt y 23 in

z

Evaluates to 23! Bad!



Regions

addInt :: [r1 r2 r3 : %].

Int r1 -> Int r2 -> Int r3

updateInt :: [r1 r2 : %].

Mutable r1 =>

Int r1 -> Int r2 -> Unit



Mutability - with region constraint

RULE add0r [r1 r2 : %] (x : Int r1).

Const r1 =>

addInt [r1] [r2] [r1] x 0

= x

let y = 5 in

let z = addInt [r1] [r2] [r1] y 0 in

let _ = updateInt [r1] [r3] <w> y 23 in

z

The rule can no longer fire.



Repeating effects

RULE mul2r (x : Int).

mulInt x 2

= addInt x x

let f = (\_. print "Oh!"; return 5)

in mulInt (f ()) 2

Prints ”Oh!” and returns 10.



Repeating effects - after rewrite

RULE mul2r (x : Int).

mulInt x 2

= addInt x x

let f = (\_. print "Oh!"; return 5)

in addInt (f ()) (f ())

Prints ”Oh!Oh!” and returns 10! Bad!



Repeating effects - fixed

RULE mul2r (x : Int).

mulInt x 2

= addInt x x

let f = (\_. print "Oh!"; return 5)

in let x = f () in

addInt x x

Prints ”Oh!” and returns 10.



Interfering effects

RULE mapMap (f g : Int -> Int)

(xs : List Int).

map f (map g xs) = map (f.g) xs

let acc = 0

let g = (\x. updateInt acc (addInt acc x);

x)

let f = (\x. addInt acc x)

map f (map g [1,2,3])



Interfering effects - evaluated

let acc = 0

let g = (\x. updateInt acc (addInt acc x);

x)

let f = (\x. addInt acc x)

map f (map g [1,2,3])

Before rewrite

map f (map g [1,2,3]) = [7, 8, 9]

After rewrite: bad bad bad

map (f.g) [1,2,3] = [2, 5, 9]



Effects

addInt :: [r1 r2 r3 : %].

Int r1 -> Int r2

-(Read r1 + Read r2 + Alloc r3)>

Int r3

updateInt :: [r1 r2 : %].

Mutable r1 =>

Int r1 -> Int r2

-(Read r2 + Write r1)>

Unit



Interfering effects - with effect types

RULE mapMap (f g : Int -> Int)

(xs : List Int).

map f (map g xs) = map (f.g) xs

let acc : Int

= 0

let g : Int -(Read r1 + Write r1)> Int

= (\x. updateInt acc (addInt acc x);

x)

let f : Int -(Read r1)> Int

= (\x. addInt acc x)

map f (map g [1,2,3])



Interfering effects - new rule with effect constraint

RULE mapMap

[ef eg : !]

(f : Int -(ef)> Int)

(g : Int -(eg)> Int)

(xs : List Int).

Disjoint ef eg =>

map f (map g xs) = map (f.g) xs



Disjoint

Two reads are safe

Disjoint (Read r1) (Read r2)

Read and write are only safe if the regions are distinct

Distinct r1 r2 =>

Disjoint (Read r1) (Write r2)

Allocation is always safe

Disjoint (Alloc r1) e



Disjoint

Effect sums are safe if all their elements are safe

Disjoint e11 e2 =>

Disjoint e12 e2 =>

Disjoint (e11+e12) e2

Commutative

Disjoint e1 e2 =>

Disjoint e2 e1



Inline CONLIKE

RULE unboxBox ...

unbox (box i) = i

let x = box 52

y = foo (unbox x)

z = bar (unbox x)

in y + z



Inline CONLIKE / let-holes

RULE unboxBox ...

unbox (box i) = i

RULE unboxBox’ ...

Const r =>

unbox {box i} = i

let x = box 52

y = foo (unbox x)

z = bar (unbox x)

in y + z



Done

thank you, happy nice day



Inlining conflicts

let sum = foldr (+) 0

RULE sumMapMul ...

sum (map (*2) xs) = (sum xs) * 2

sum (map (*2) [1,2])

==>

foldr (+) 0 (map (*2) [1,2])

|||

(sum [1,2]) * 2



Inlining conflicts - phases

let sum = foldr (+) 0

INLINE 2 sum

RULE sumMapMul ...

sum (map (*2) xs) = (sum xs) * 2

sum (map (*2) [1,2])

==>

(sum [1,2]) * 2

==>

(foldr (+) 0 [1,2]) * 2



Foldr/build fusion - build definition

build [a : *] [r : %] [eg1 eg2 : !] [cg1 cg2 : $]

(g : [b : *]. [ec1 ec2 en : !]. [cc1 cc2 cn : $].

(a -(ec1|cc1)> b -(ec2|cc2)> b)

-(eg1|cg1)>

(Unit -(en|cn)> b)

-(eg2+ec1+ec2+en|cg2+cc1)>

b)

eg1+eg2 + Alloc r | Use r

: List r a

= g [List r a] [!0] [Alloc r]

[Alloc r] [:$0 (DeepUse a) $0:]

(Cons [:r a:]) (Nil [:r a:])



Foldr/build fusion - first rule

RULE foldrBuild

[a b : *] [r : %]

[ek1 ek2 ez eg1 eg2 : !]

[ck1 ck2 cz cg1 cg2 : $]

(k : a -(ek1|ck1)> b -(ek2|ck2)> b)

(z : Unit -(ez|cz)> b)

(g : [gb : *]. [ec1 ec2 en : !]. [cc1 cc2 cn : $].

(a -(ec1|cc1)> gb -(ec2|cc2)> gb)

-(eg1|cg1)>

(Unit -(en|cn)> gb)

-(eg2+ec1+ec2+en|cg2+cc1)>

gb).

Disjoint (ek1+ek2+ez) (eg1+eg2) =>

foldr [:a b r ek1 ek2 ez ck1 ck2 cz:]

k z

(build [:eg1 eg2 cg1 cg2:] g)

= g [:b ek1 ek2 ez ck1 ck2 cz:] k z



Foldr/build fusion - phased for inlining

foldr_build [...] k z g

= foldr [...] k z (build [...] g)

RULE foldrBuild_unconditional

...

(no constraints)

foldr k z (build g) = foldr_build k z g

RULE foldrBuild_fuse

...

Disjoint (ek1+ek2+ez) (eg1+eg2) =>

foldr_build k z g = g k z


	Overview

