$$
\begin{gathered}
\text { Strong Functional } \\
\text { Programming }
\end{gathered}
$$

Without \perp

Without \perp

Turing Complete

Without \perp

Turing Complete

Codata

Without \perp

Turing Complete

Codata

Comonad

Life without \perp

loop : : Int -> Int
loop $\mathrm{n}=1+$ loop n

Life without \perp

loop : : Int -> Int
loop $\mathrm{n}=1+$ loop n
loop $0=1+$ loop 0

Life without \perp

loop : : Int -> Int
loop $\mathrm{n}=1+$ loop n
loop $0=1+$ loop 0

$$
0=1
$$

Life without \perp

loop : : Int $->$ Int
loop $\mathrm{n}=1+$ loop n
loop $0=1+$ loop 0

$$
0=1
$$

Int (\perp)

Life without \perp Simpler language design

Strict vs lazy

Life without \perp Simpler language design
Strict vs lazy
-- a function returning the first argument first a b $=\mathrm{a}$
-- with strict evaluation
first $1 \perp=\perp$
-- with lazy evaluation
first $1 \perp=1$

Life without \perp Simpler language design

Pattern matching

Life without \perp Simpler language design

Pattern matching

-- will not match if (a, b) is \perp
first (a, b) = a
-- a bottom value can be "lifted" to a pair of bottom values
$(\perp \mathrm{a}, \perp \mathrm{b})=\perp$

Life without \perp Simpler language design

\& Operator

True \& True = True True \& False = False False \& True = False False \& False = False

Life without \perp Simpler language design

\& Operator

True \& True $=$ True	$\perp \& Y=?$
True \& False $=$ False	$\mathbf{x} \& \perp=$?
False \& True $=$ False	

Life without \perp Simpler language design

\& Operator

True \& True = True
True \& False = False
False \& True = False
False \& False = False

$\perp \& \mathbf{Y}=\perp$
$\mathbf{x} \& \perp=$ False if $x=$ False
$\mathbf{x} \& \perp=\perp$ otherwise

Life without \perp

Reduction

Life without $\perp \quad$ Simpler language design

Reduction

```
a = true
if a then b else c ==> b
```


Reduction

a = true

if a then b else $c \quad==>\quad b$
http://cseweb.ucsd.edu/classes/wi08/cse230/lectures/lec12.pdf
The Diamond Property

- Relation R has diamond property if: whenever e $R e_{1}$ and e $R e_{2}$, there exists e^{\prime} such that $e_{1} R e^{\prime}$ and $e_{2} R e^{\prime}$

Reduction

$a=$ true
if a then b else $c \quad==>b$
http://cseweb.ucsd.edu/classes/wi08/cse230/lectures/lec12.pdf
The Diamond Property

- Relation R has diamond property if: whenever $e R e_{1}$ and $e R e_{2}$, there exists e^{\prime} such that $e_{1} R e^{\prime}$ and $e_{2} R e^{\prime}$

-- is there always a normal form?
-- is it unique?
(YES <=> Strongly "Church-Rosser"

Life without \perp

-- So far, so good
©

Life without \perp

-- So far, so good ©
-- Not Turing complete!
-- Non termination?
-- the interpreter eval code input $=$ result
-- the interpreter breaker
-- the interpreter eval code input $=$ result
-- the interpreter breaker evil code $=1+$ eval code code

-- the interpreter

 eval code input $=$ result-- the interpreter breaker evil code $=1+$ eval code code
-- by definition of eval + evil "number" eval 666666 = evil 666
-- the interpreter eval code input $=$ result
-- the interpreter breaker evil code $=1+$ eval code code
-- by definition of eval + evil "number" eval 666666 = evil 666 -- by definition of evil evil $666=1$ + (eval 666 666)
-- 'evil 666' $\Leftrightarrow 0=1$
evil 666 = 1 + evil 666

Not Turing Complete

-- The rules of termination

-- taking the first element of a list head a : : List a a -> a head Nil default = default head (Cons a rest) default $=$ a
-- taking the first element of a list head a : : List a a $->$ a head Nil default = default head (Cons a rest) default $=$ a
data NonEmptyList $a=$ NCons a (List $a)$
-- taking the first element of a non-empty list
head a : : NonEmptyList a $->$ a
head (NCons a rest) $=a$
-- Arithmetic operators?
$1 / 0$
$0 / 0$
data Silly $a=\operatorname{Very}(S i l l y ~ a ~->~ a) ~$
bad a : : Silly a -> a bad (Very f) $=\mathrm{f}($ Very f)
-- infinite recursion, again...
ouch :: a
ouch $=$ bad (Very bad)
factorial : : Nat -> Nat factorial Zero $=0$
factorial (Suc Zero) = 1
-- we recurse with a sub-component of (Suc n)
factorial (Suc n) $=($ Suc n) * (factorial n)
-- Ackermann function ack : : Nat Nat $->$ Nat ark $0 \mathrm{n}=\mathrm{n}+1$
-- $m+1$ is a shortcut for (Suck m)
ack $(\mathrm{m}+1) 0 \quad=a c k \mathrm{~m} 1$ ark $(m+1)(n+1)=a c k m(\operatorname{ack}(m+1) n)$
-- Ackermann function ack : : Nat Nat $->$ Nat ack $0 \mathrm{n}=\mathrm{n}+1$
-- m + 1 is a shortcut for (Suc m)
ack $(\mathrm{m}+1) 0 \quad=a c k \mathrm{~m} 1$
ack $(m+1)(n+1)=a c k m(\operatorname{ack}(m+1) n)$
-- every provably terminating function
-- with first-order logic => a lot
-- Naive power function pow : : Nat -> Nat -> pow $x \mathrm{n}=1, \quad \begin{aligned} & \text { if } n==0 \\ &=x * \text { (pow } x(n-1)), \text { otherwise }\end{aligned}$
-- Naive power function pow : : Nat -> Nat ->

$$
\text { pow } \begin{aligned}
\mathrm{n} & =1, \\
& =\mathrm{x} * \text { (pow } \mathrm{x}(\mathrm{n}-1)), \text { otherwise } \mathrm{n}==0
\end{aligned}
$$

-- Faster
pow : : Nat -> Nat -> Nat

$$
\begin{array}{rlrl}
\text { pow } x \mathrm{n} & =1, & & \text { if } n==0 \\
& =x * \text { pow }(x * x)(n / 2), & \text { if odd } n \\
& =\text { pow }(x * x)(n / 2), & & \text { otherwise }
\end{array}
$$

-- representation of a binary digit data Bit $=$ On | Off
-- built-in
bits : : Nat -> List Bit
-- primitive recursive now
pow : : Nat -> Nat -> Nat
pow $\times \mathrm{n}=$ pow 1 x (bits n)
pow : : Nat -> List Bit -> Nat
pow 1 x n = 1
pow 1 x (Cons On r) $=\mathbf{x} *$ (pow ($\mathbf{x} * x$) r)
pow 1 x (Cons Off r) $=$ pow 1 ($x * x$) r

Codata for "infinite" computations

-- How to program an OS?
-- in Haskell
data Stream a = Cons a (Stream a)

Codata

A new keyword

-- in Haskell
data Stream a = Cons a (Stream a)
-- in SFP
-- (Cocons a rest) is in normal form
codata Colist a = Conil | a <> Colist a
-- functions on codata must always use a
-- coconstructor for their result
function a : : Colist a -> Colist a
function a <> rest $=$ 'xxx' <> (function 'yyy')
-- functions on codata must always use a
-- coconstructor for their result
function a : : Colist a -> Colist a
function a <> rest $=$ 'xxx' <> (function 'yyy')
-- looks familiar I suppose?
ones : : Colist Nat
ones = 1 <> ones
fibonacci : : Colist Nat
fibonacci $=$ f 01
where $f a b=$
a <> (fibonacci b (a + b))
-- iterate a function:
-- $x, f x, f(f x), f(f(f x)), \ldots$
iterate $\mathbf{f} \mathbf{x}=\mathbf{x}<>$ iterate $\mathbf{f}(f \mathbf{x})$
-- map a function on a colist
comap f Conil $=$ Conil
comap f a <> rest $=(f a)<>(c o m a p ~ f r e s t)$
-- iterate a function:
-- $x, f x, f(f x), f(f(f x)), \ldots$
iterate $\mathbf{f} \mathbf{x}=\mathbf{x}<>$ iterate $\mathbf{f}(f \mathbf{x})$
-- map a function on a colist
comap f Conil $=$ Conil
comap f a <> rest $=(f a)<>(c o m a p ~ f r e s t)$
-- can you prove that?
iterate $f(f x)=$ comap f (iterate $f x$)
iterate $\mathbf{f}(\mathbf{f})$
-- 1. by definition of iterate
$=(f x)<>$ iterate $f(f(f x))$
-- 2. by hypothesis
$=(f x)<>$ comp $f(i t e r a t e f(f x))$
-- 3. by definition of comp
$=$ comp $\mathrm{f}(\mathrm{x}<>$ iterate $\mathrm{f}(\mathrm{f} \mathbf{x})$)
-- 4. by definition of iterate
$=$ comp f (iterate \mathbf{f} x)
iterate $\mathbf{f}(\mathbf{f})$
-- 1. by definition of iterate
$=(f x)<>$ iterate $f(f(f x))$
-- 2. by hypothesis
$=(f x)<>$ comp $f($ iterate $f(f x))$
-- 3. by definition of comp
$=$ comp $f(x<>$ iterate $f(f x))$
-- 4. by definition of iterate
$=$ comp f (iterate \mathbf{f} x)
iterate $\mathbf{f}(\mathbf{f})$
-- 1. by definition of iterate
$=(f x)<>$ iterate $f(f(f x))$
-- 2. by hypothesis
$=(f x)<>$ comp $f($ iterate $f(f x))$
-- 3. by definition of comp
$=$ comp $f(x<>$ iterate $f(f x))$
-- 4. by definition of iterate
$=$ comp f (iterate \mathbf{f} x)
-- not primary corecursive, but ok
evens $=2<>$ (comap (+2) evens)
-- not primary corecursive, but ok evens $=2<>$ (comap (+2) evens)
-- infinite lists codata Colist $a=a<>$ Colist a
cotail a : : Colist a $->$ Colist a cotail a <> rest $=$ rest
-- don't do this at home
bad $=1<>$ (cotail bad)
-- not primary corecursive, but ok evens $=2<>$ (comap (+2) evens)
-- infinite lists codata Colist $a=a<>$ Colist a
cotail a : : Colist a $->$ Colist a cotail a <> rest $=$ rest
-- don't do this at home
bad $=1<>$ (cotail bad)
Count coconstructors!

A co-era is opening

```
extract :: W a -> a
cobind :: W a -> b -> W a -> W b
```

-- a Colist of Nats nats $=0<>$ comap (+1) nats
-- take the first 2 elements of a Colist firstTwo a : : Colist a $->(\mathrm{a}, \mathrm{a})$ firstTwo $\mathrm{a}<>\mathrm{b}<>$ rest $=(\mathrm{a}, \mathrm{b})$
-- cobind firstTwo to nats
cobind firstTwo nats =

Costate

Intuitions

-- State

-- "return a result based on an observable state"
-- thread mutable state State (s -> (s, a))
-- Costate
-- "return a result based on the internal state and an external event"
-- aka 'an Object', 'Store'

Costate

Intuitions

-- State

-- "return a result based on an observable state"
-- thread mutable state State (s -> (s, a))
-- Costate
-- "return a result based on the internal state and an external event"
-- aka 'an Object', 'Store'
Costate (e, e -> a)

