
Strong Functional
Programming

(sfp)

Tuesday, 24 July 2012

Without ⊥

Tuesday, 24 July 2012

Without ⊥ Turing
Complete

Tuesday, 24 July 2012

Without ⊥ Turing
Complete

Codata

Tuesday, 24 July 2012

Without ⊥ Turing
Complete

Codata Comonad

Tuesday, 24 July 2012

Life without ⊥

loop :: Int -> Int
loop n = 1 + loop n

Tuesday, 24 July 2012

Life without ⊥

loop :: Int -> Int
loop n = 1 + loop n

loop 0 = 1 + loop 0

Tuesday, 24 July 2012

Life without ⊥

loop :: Int -> Int
loop n = 1 + loop n

loop 0 = 1 + loop 0

0 = 1

Tuesday, 24 July 2012

Life without ⊥

loop :: Int -> Int
loop n = 1 + loop n

loop 0 = 1 + loop 0

0 = 1

Int(⊥)

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Strict vs lazy

Tuesday, 24 July 2012

Life without ⊥

-- a function returning the first argument
first a b = a

-- with strict evaluation
first 1 ⊥ = ⊥

-- with lazy evaluation
first 1 ⊥ = 1

Simpler language design
Strict vs lazy

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Pattern matching

Tuesday, 24 July 2012

Life without ⊥

-- will not match if (a, b) is ⊥
first (a, b) = a

-- a bottom value can be "lifted” to a pair
 of bottom values
(⊥a, ⊥b) = ⊥

Simpler language design
Pattern matching

Tuesday, 24 July 2012

Life without ⊥

True & True = True
True & False = False
False & True = False
False & False = False

Simpler language design
& Operator

Tuesday, 24 July 2012

Life without ⊥

True & True = True
True & False = False
False & True = False
False & False = False

Simpler language design
& Operator

⊥ & y = ?
x & ⊥ = ?

Tuesday, 24 July 2012

Life without ⊥

True & True = True
True & False = False
False & True = False
False & False = False

Simpler language design
& Operator

⊥ & y = ?
x & ⊥ = ?

⊥ & y = ⊥
x & ⊥ = False if x = False
x & ⊥ = ⊥ otherwise

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Reduction

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Reduction

a = true
if a then b else c ==> b

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Reduction

a = true
if a then b else c ==> b

Tuesday, 24 July 2012

Life without ⊥ Simpler language design
Reduction

a = true
if a then b else c ==> b

-- is there always a normal form?
-- is it unique?
(YES <=> Strongly “Church-Rosser”

Tuesday, 24 July 2012

Life without ⊥

-- So far, so good

Tuesday, 24 July 2012

Life without ⊥

-- So far, so good

-- Not Turing complete!
-- Non termination?

Tuesday, 24 July 2012

Turing complete L Interpreter for L?

-- the interpreter
eval code input = result
-- the interpreter breaker

Tuesday, 24 July 2012

Turing complete L Interpreter for L?

-- the interpreter
eval code input = result
-- the interpreter breaker
evil code = 1 + eval code code

Tuesday, 24 July 2012

Turing complete L Interpreter for L?

-- the interpreter
eval code input = result
-- the interpreter breaker
evil code = 1 + eval code code

-- by definition of eval + evil “number”
eval 666 666 = evil 666

Tuesday, 24 July 2012

Turing complete L Interpreter for L?

-- the interpreter
eval code input = result
-- the interpreter breaker
evil code = 1 + eval code code

-- by definition of eval + evil “number”
eval 666 666 = evil 666
-- by definition of evil
evil 666 = 1 + (eval 666 666)
-- 'evil 666' 0 = 1
evil 666 = 1 + evil 666

Tuesday, 24 July 2012

Not Turing
Complete

-- The rules of termination

Tuesday, 24 July 2012

Termination Complete case analysis

Tuesday, 24 July 2012

Termination Complete case analysis

-- taking the first element of a list
head a :: List a a -> a
head Nil default = default
head (Cons a rest) default = a

Tuesday, 24 July 2012

Termination Complete case analysis

-- taking the first element of a list
head a :: List a a -> a
head Nil default = default
head (Cons a rest) default = a

data NonEmptyList a = NCons a (List a)

-- taking the first element of a
 non-empty list
head a :: NonEmptyList a -> a
head (NCons a rest) = a

Tuesday, 24 July 2012

Termination Complete case analysis

Tuesday, 24 July 2012

Termination Complete case analysis

-- Arithmetic operators?
1 / 0
0 / 0

Tuesday, 24 July 2012

Termination Non-covariant type recursion

Tuesday, 24 July 2012

Termination Non-covariant type recursion

data Silly a = Very (Silly a -> a)

bad a :: Silly a -> a
bad (Very f) = f (Very f)

-- infinite recursion, again…
ouch :: a
ouch = bad (Very bad)

Tuesday, 24 July 2012

Termination Structural recursion

Tuesday, 24 July 2012

Termination Structural recursion

factorial :: Nat -> Nat
factorial Zero = 0
factorial (Suc Zero) = 1

-- we recurse with a sub-component
 of (Suc n)
factorial (Suc n) = (Suc n) *
 (factorial n)

Tuesday, 24 July 2012

Termination Structural recursion

Tuesday, 24 July 2012

Termination Structural recursion

-- Ackermann function
ack :: Nat Nat -> Nat
ack 0 n = n + 1

-- m + 1 is a shortcut for (Suc m)
ack (m + 1) 0 = ack m 1
ack (m + 1) (n + 1) = ack m (ack (m + 1) n)

Tuesday, 24 July 2012

Termination Structural recursion

-- Ackermann function
ack :: Nat Nat -> Nat
ack 0 n = n + 1

-- m + 1 is a shortcut for (Suc m)
ack (m + 1) 0 = ack m 1
ack (m + 1) (n + 1) = ack m (ack (m + 1) n)

-- every provably terminating function
-- with first-order logic => a lot

Tuesday, 24 July 2012

Termination Structural recursion

Tuesday, 24 July 2012

Termination Structural recursion

-- Naive power function
pow :: Nat -> Nat ->
pow x n = 1, if n == 0
 = x * (pow x (n - 1)), otherwise

Tuesday, 24 July 2012

Termination Structural recursion

-- Naive power function
pow :: Nat -> Nat ->
pow x n = 1, if n == 0
 = x * (pow x (n - 1)), otherwise

-- Faster
pow :: Nat -> Nat -> Nat
pow x n = 1, if n == 0
 = x * pow (x * x) (n / 2), if odd n
 = pow (x * x) (n / 2), otherwise

Tuesday, 24 July 2012

Termination Structural recursion

Tuesday, 24 July 2012

Termination Structural recursion

-- representation of a binary digit
data Bit = On | Off
-- built-in
bits :: Nat -> List Bit

-- primitive recursive now
pow :: Nat -> Nat -> Nat
pow x n = pow1 x (bits n)

pow1 :: Nat -> List Bit -> Nat
pow1 x n = 1
pow1 x (Cons On r) = x * (pow1 (x * x) r)
pow1 x (Cons Off r) = pow1 (x * x) r

Tuesday, 24 July 2012

Codata for
“infinite”

computations

-- How to program an OS?

Tuesday, 24 July 2012

Codata A new keyword

Tuesday, 24 July 2012

Codata A new keyword

-- in Haskell
data Stream a = Cons a (Stream a)

Tuesday, 24 July 2012

Codata A new keyword

-- in SFP
-- (Cocons a rest) is in normal form
codata Colist a = Conil | a <> Colist a

-- in Haskell
data Stream a = Cons a (Stream a)

Tuesday, 24 July 2012

Codata A new rule

Tuesday, 24 July 2012

Codata A new rule

-- functions on codata must always use a
-- coconstructor for their result
function a :: Colist a -> Colist a
function a <> rest = 'xxx' <> (function ’yyy’)

Tuesday, 24 July 2012

Codata A new rule

-- functions on codata must always use a
-- coconstructor for their result
function a :: Colist a -> Colist a
function a <> rest = 'xxx' <> (function ’yyy’)

-- looks familiar I suppose?
ones :: Colist Nat
ones = 1 <> ones

fibonacci :: Colist Nat
fibonacci = f 0 1
 where f a b =
 a <> (fibonacci b (a + b))

Tuesday, 24 July 2012

Codata A new proof mode

Tuesday, 24 July 2012

Codata A new proof mode

-- iterate a function:
-- x, f x, f (f x), f (f (f x)),...
iterate f x = x <> iterate f (f x)

-- map a function on a colist
comap f Conil = Conil
comap f a <> rest = (f a) <> (comap f rest)

Tuesday, 24 July 2012

Codata A new proof mode

-- iterate a function:
-- x, f x, f (f x), f (f (f x)),...
iterate f x = x <> iterate f (f x)

-- map a function on a colist
comap f Conil = Conil
comap f a <> rest = (f a) <> (comap f rest)

-- can you prove that?
iterate f (f x) = comap f (iterate f x)

Tuesday, 24 July 2012

Codata A new proof mode

iterate f (f x)
-- 1. by definition of iterate
= (f x) <> iterate f (f (f x))

-- 2. by hypothesis
= (f x) <> comap f (iterate f (f x))

-- 3. by definition of comap
= comap f (x <> iterate f (f x))

-- 4. by definition of iterate
= comap f (iterate f x)

Tuesday, 24 July 2012

Codata A new proof mode

iterate f (f x)
-- 1. by definition of iterate
= (f x) <> iterate f (f (f x))

-- 2. by hypothesis
= (f x) <> comap f (iterate f (f x))

-- 3. by definition of comap
= comap f (x <> iterate f (f x))

-- 4. by definition of iterate
= comap f (iterate f x)

Bisimilarity!

Tuesday, 24 July 2012

Codata A new proof mode

iterate f (f x)
-- 1. by definition of iterate
= (f x) <> iterate f (f (f x))

-- 2. by hypothesis
= (f x) <> comap f (iterate f (f x))

-- 3. by definition of comap
= comap f (x <> iterate f (f x))

-- 4. by definition of iterate
= comap f (iterate f x)

Bisimilarity!

Tuesday, 24 July 2012

Codata Limitations

Tuesday, 24 July 2012

Codata Limitations

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

Tuesday, 24 July 2012

Codata Limitations

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

-- infinite lists
codata Colist a = a <> Colist a

cotail a :: Colist a -> Colist a
cotail a <> rest = rest

-- don't do this at home
bad = 1 <> (cotail bad)

Tuesday, 24 July 2012

Codata Limitations

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

-- infinite lists
codata Colist a = a <> Colist a

cotail a :: Colist a -> Colist a
cotail a <> rest = rest

-- don't do this at home
bad = 1 <> (cotail bad)

Count coconstructors!

Tuesday, 24 July 2012

A co-era is
opening

extract :: W a -> a
cobind :: W a -> b -> W a -> W b

Tuesday, 24 July 2012

Comonad A simple example

-- a Colist of Nats
nats = 0 <> comap (+1) nats

-- take the first 2 elements of a Colist
firstTwo a :: Colist a -> (a, a)
firstTwo a <> b <> rest = (a, b)

-- cobind firstTwo to nats
cobind firstTwo nats =
(0, 1) <> (1, 2) <> (2, 3) <> …

Tuesday, 24 July 2012

Costate Intuitions

-- State
-- “return a result based on an observable
state”
-- thread mutable state
State (s -> (s, a))

-- Costate
-- “return a result based on the internal
state and an external event”
-- aka ‘an Object’, ‘Store’

Tuesday, 24 July 2012

Costate Intuitions

-- State
-- “return a result based on an observable
state”
-- thread mutable state
State (s -> (s, a))

-- Costate
-- “return a result based on the internal
state and an external event”
-- aka ‘an Object’, ‘Store’
Costate (e, e -> a)

Tuesday, 24 July 2012

