\

-
~—

S :
— — k\‘ ‘;

Tuesday, 24 July 2012



Without L




Without L Turing
Complete




Without L Turing
Complete

Codata




Without L Turing
Complete

Codata




Life without L

loop :: Int -> Int
loopn =1 + loop n




Life without L

loop :: Int -> Int
loopn =1 + loop n

loop 0 =1 + loop O

Tuesday, 24 July 2012



Life without

loop :: Int -> Int
loopn =1 + loop n

loop 0 =1 + loop O

Tuesday, 24 July 2012



Life without

loop :: Int -> Int
loopn =1 + loop n

loop 0 =1 + loop O

Tuesday, 24 July 2012



Life without L

Strict vs lazy

Tuesday, 24 July 2012



Life without L

Strict vs lazy

-- a function returning the first argument
first a b = a

-— with strict evaluation
first 1 1L = 1

-- with lazy evaluation
first 1 L =

Tuesday, 24 July 2012



Life without L

Pattern matching

Tuesday, 24 July 2012



Life without L

Pattern matching

-— will not match 1f (a, b) 1s L
first (a, b) = a

-- a bottom value can be "lifted” to a pair
of bottom values
(La, 1b) = 1

Tuesday, 24 July 2012



Life without L

& Operator

True
True
False
False

Tuesday, 24 July 2012

& True
& False
& True
& False




Life without L

& Operator

True
True
False
False

Tuesday, 24 July 2012

& True
& False
& True
& False




Life without L

& Operator

True & True
True & False
False & True
False & False

= 1
= False 1f x = False
= |1 otherwise

Tuesday, 24 July 2012



Life without L

Reduction

Tuesday, 24 July 2012



Life without L

Reduction

a = true
1f a then b else c

Tuesday, 24 July 2012



Life without L

Reduction

a = true
1f a then b else c

http://cseweb.ucsd.edu/classes/wi08/cse230/lectures/lecl2.pdf

The Diamond Property

» Relation R has diamond property if: g

R
whenever e Re,andeR e, , A

there exists e’ suchthat e, Re’ ande, Re’ ¢,

€,
R~_"R
b

Tuesday, 24 July 2012



Life without L

Reduction

a = true
1f a then b else c

http://cseweb.ucsd.edu/classes/wi08/cse230/lectures/lec12.pdf

The Diamond Property

» Relation R has diamond property if: g

R
whenever e Re,andeR e, , N

there exists e’ such that e, Re’ande, Re’ e, e,
R

}\\'/
-—- 1s there always a normal form?
-— 1s 1t unique?
(YES <=> Strongly "“Church-Rosser”

Tuesday, 24 July 2012



Life without L

-- So far, so good

©




Life without L

-- So far, so good

©

-— Not Turing complete!
-— Non termination?

Tuesday, 24 July 2012



Turing complete

-— the i1nterpreter
eval code input = result
-- the interpreter breaker

Tuesday, 24 July 2012



Turing complete

-— the i1nterpreter

eval code input = result

-- the interpreter breaker
evil code = 1 + eval code code

Tuesday, 24 July 2012



Turing complete

-— the i1nterpreter

eval code input = result

-- the interpreter breaker
evil code = 1 + eval code code

-- by definition of eval + evil “number”

eval 666 666 = evil 666

Tuesday, 24 July 2012



Turing complete

-— the i1nterpreter

eval code input = result

-- the interpreter breaker
evil code = 1 + eval code code

-- by definition of eval + evil “number”

eval 666 666 = evil 666

-- by definition of evil
evil 666 = 1 + (eval 666 666)
-- 'evil 666' <~ 0 =

evil 666 = 1 + evil 666

Tuesday, 24 July 2012



Not Turing
Complete

—— The rules of termination




Termination

Tuesday, 24 July 2012



Termination

-- taking the first element of a list
head a :: List a a -> a

head Nil default default
head (Cons a rest) default a

Tuesday, 24 July 2012



Termination

-- taking the first element of a list
head a :: List a a -> a

head Nil default default
head (Cons a rest) default a

data NonEmptylList a = NCons a (List a)

-- taking the first element of a
non-empty list

head a :: NonEmptyList a -> a

head (NCons a rest) =

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

-—- Arithmetic operators?

1 /0
0/ 0

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

data Silly a = Very (Silly a -> a)

bad a :: Silly a -> a
bad (Very f) = £ (Very f£)

-- i1nfinite recursion, again..
ouch :: a
ouch = bad (Very bad)

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

factorial :: Nat -> Nat
factorial Zero =0
factorial (Suc Zero) =1

-- we recurse with a sub-component

of (Suc n)
factorial (Suc n) = (Suc n) *
(factorial n)

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

-— Ackermann function
ack :: Nat Nat -> Nat
ack On=n+1

-—m+ 1 is a shortcut for (Suc m)
ack (m + 1) O = ack m 1

ack (m + 1) (n + 1) = ack m (ack (m + 1) n)

Tuesday, 24 July 2012



Termination

-— Ackermann function
ack :: Nat Nat -> Nat
ack On=n+1

-—m+ 1 is a shortcut for (Suc m)
ack (m + 1) O = ack m 1

ack (m + 1) (n + 1) = ack m (ack (m + 1) n)

-—- every provably terminating function
-- with first-order logic => a lot

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

-- Naive power function

pow :: Nat -> Nat ->

pow x n = 1, i1f n ==
= x * (pow x (n - 1)), otherwise

Tuesday, 24 July 2012



Termination

-- Naive power function

pow :: Nat -> Nat ->

pow x n = 1, i1f n ==
= x * (pow x (n - 1)), otherwise

-- Faster
pow :: Nat -> Nat -> Nat
pow x n = 1, if n == 0
=X * pow (x * x) (n / 2), if odd n
pow (x * x) (n / 2), otherwise

Tuesday, 24 July 2012



Termination

Tuesday, 24 July 2012



Termination

-- representation of a binary digit
data Bit = On | Off

-- built-in

bits :: Nat -> List Bit

-—- primitive recursive now
pow :: Nat -> Nat -> Nat

pow x n = powl x (bits n)

powl :: Nat -> List Bit -> Nat

powl x n =1

powl x (Cons On r) x * (powl (x * x) r)
powl x (Cons Off r) powl (x * x) r

Tuesday, 24 July 2012



Codata for
“i1nfinite”
computations

-— How to program an OS?




Codata

Tuesday, 24 July 2012



Codata

—-— 1n Haskell
data Stream a = Cons a (Stream a)

Tuesday, 24 July 2012



Codata

—-— 1n Haskell
data Stream a = Cons a (Stream a)

-— 1n SFP

—-— (Cocons a rest) is in normal form
codata Colist a = Conil | a <> Colist a

Tuesday, 24 July 2012



Codata

Tuesday, 24 July 2012



Codata

—-—- functions on codata must always use a

-— coconstructor for their result

function a :: Colist a -> Colist a

function a <> rest = 'xxx' <> (function 'yyy’)

Tuesday, 24 July 2012



Codata

—-— functions on codata must always use a

-— coconstructor for their result

function a :: Colist a -> Colist a

function a <> rest = 'xxx' <> (function 'yyy’)

-- looks familiar I suppose®?
ones :: Colist Nat
ones = 1 <> ones

fibonacci :: Colist Nat
fibonacci = £ 0 1
where £ a b =
a <> (fibonacci b (a + b))

Tuesday, 24 July 2012



Codata

Tuesday, 24 July 2012



Codata

-— 1terate a function:
--x, £ x, £ (£ x), £ (£ (£ x)),...
iterate £ x = x <> iterate £ (f x)

-- map a function on a colist
comap £ Conil = Conil

comap f a <> rest = (f a) <> (comap f rest)

Tuesday, 24 July 2012



Codata

-— 1terate a function:
--x, £ x, £ (£ x), £ (£ (£ x)),...
iterate £ x = x <> iterate £ (f x)

-- map a function on a colist
comap £ Conil = Conil

comap f a <> rest = (f a) <> (comap f rest)

-—- can you prove that?
iterate £ (f x) = comap £ (iterate f x)

Tuesday, 24 July 2012



Codata

iterate £ (f x)
-- 1. by definition of iterate
= (f x) <> 1iterate £ (f (f x))

- 2. by hypothesis
(f x) <> comap f (iterate £ (f x))

- 3. by definition of comap
comap f (x <> iterate f (f x))

- 4. by definition of iterate
comap f (iterate f x)

Tuesday, 24 July 2012



Codata

iterate £ (f x)
-- 1. by definition of iterate
= (f x) <> iterate f&if\if\f))
Bisimilarity!
- 2. by hypothesis e/////// Y

(f x) <> comap f (iterate £ (f x))

- 3. by definition of comap
comap f (x <> iterate f (f x))

- 4. by definition of iterate
comap f (iterate f x)

Tuesday, 24 July 2012



Codata

iterate £ (f x)
-- 1. by definition of iterate
= (f x) <> iterate f&if\if\f))
Bisimilarity!
- 2. by hypothesis e/////// Y

(f x) <> comap f (iterate £ (f x))

- 3. by definition of comap
comap f (x <> iterate f (f x))

- 4. by definition of iterate
comap f (iterate f x)

Tuesday, 24 July 2012



Codata

Tuesday, 24 July 2012



Codata

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

Tuesday, 24 July 2012



Codata

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

-— 1nfinite lists
codata Colist a = a <> Colist a

cotail a :: Colist a -> Colist a
cotalil a <> rest = rest

-— don't do this at home
bad = 1 <> (cotail bad)

Tuesday, 24 July 2012



Codata

-- not primary corecursive, but ok
evens = 2 <> (comap (+2) evens)

-— 1nfinite lists
codata Colist a = a <> Colist a

cotail a :: Colist a -> Colist a
cotalil a <> rest = rest

-— don't do this at home
bad = 1 <> (cotail bad)

Count coconstructors!'!

Tuesday, 24 July 2012



A co-era 1s
opening

extract :: W a -> a
cobind :: Wa->b ->Wa->W»>Db




Comonad

-— a Colist of Nats
nats = 0 <> comap (+1) nats

-- take the first 2 elements of a Colist
firstTwo a :: Colist a -> (a, a)
firstTwo a <> b <> rest = (a, b)

-— cobind firstTwo to nats

cobind firstTwo nats =
(0, 1) <> (1, 2) <> (2, 3) <> ..

Tuesday, 24 July 2012



Costate

-— State

—-— “return a result based on an observable
state”

—-- thread mutable state

State (s -> (s, a))

—-— Costate

—— “return a result based on the internal
state and an external ewvent”

-—- aka ‘an Object’, ‘Store’

Tuesday, 24 July 2012



Costate

-— State

—-— “return a result based on an observable
state”

—-- thread mutable state

State (s -> (s, a))

-— Costate
-— “return a result based on the internal

state and an external event”
-—- aka ‘an Object’, ‘Store’
Costate (e, e -> a)

Tuesday, 24 July 2012



