Generic Matrix Multiplication

Sean Seefried

Revision

Dot products

Take two vectors of length n

$$u = (u_1, ..., u_n)$$
 $v = (v_1, ..., v_n)$

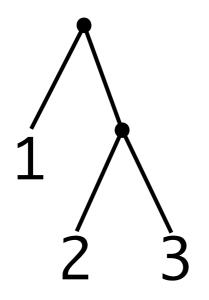
Dot product is

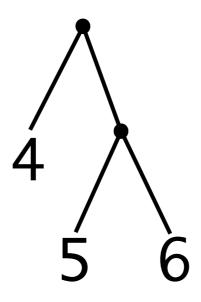
$$u \cdot v = u_1 v_1 + \dots + u_n v_n$$

or

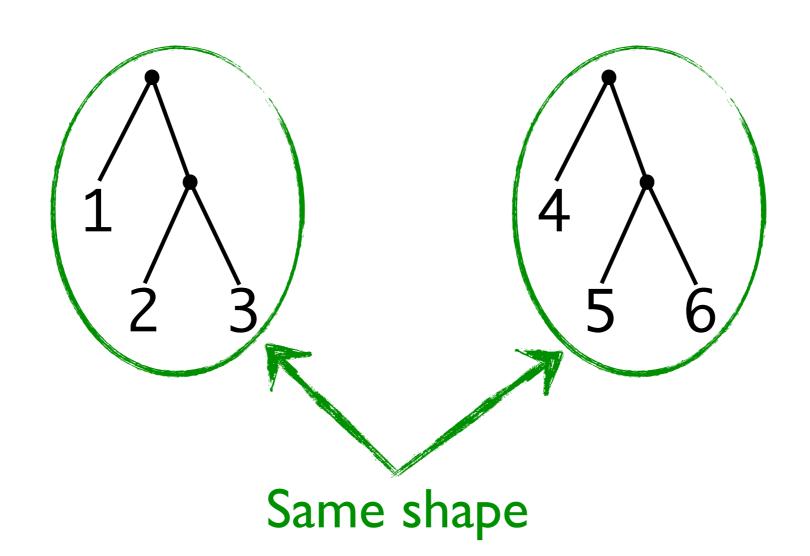
$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

What about other data types?

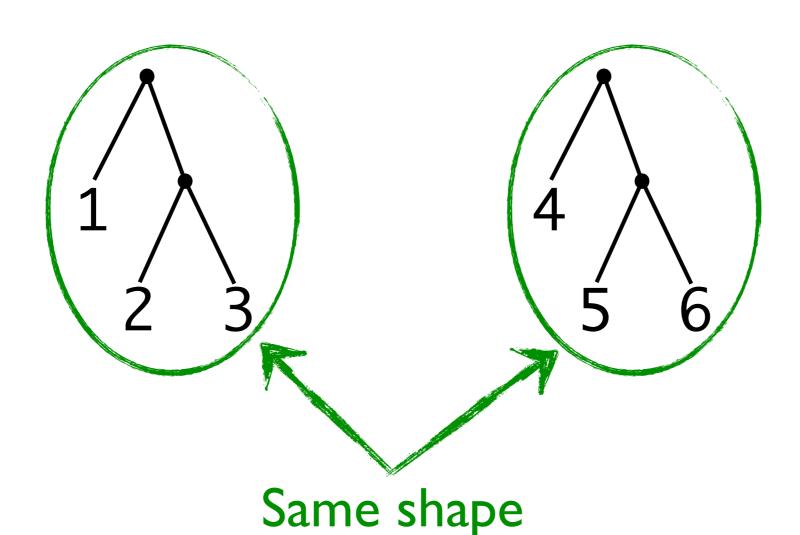




What about other data types?



What about other data types?



1*4 + 2*5 + 3*6 = 32

Shapes

- Encode shape of data structure with GADTs
- Type system ensures that only values of same shape can be zipWithed together

For a data structure T

you can define Foldable and Applicative instances

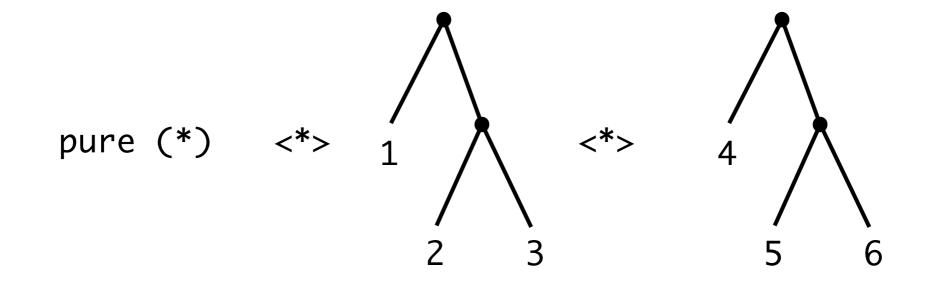
THEN you have dot product!

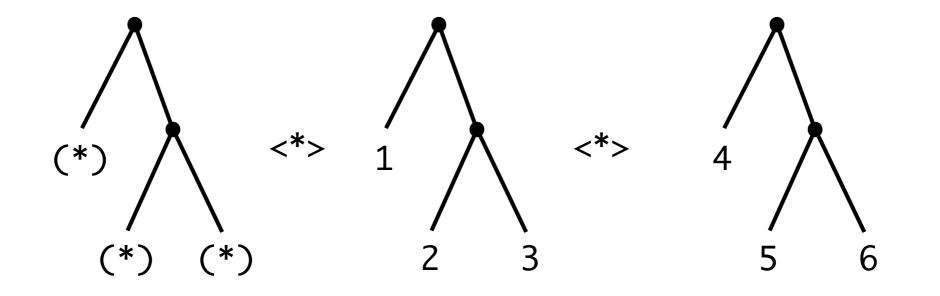
Trees with shapes

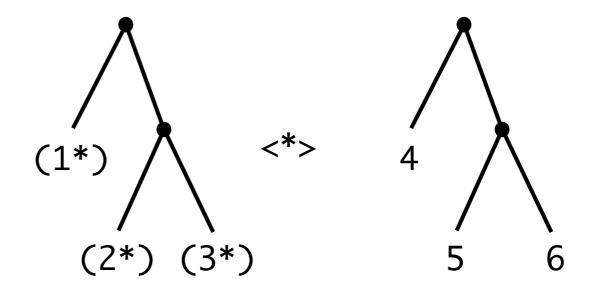
```
data Tree sh a where
Leaf :: a -> Tree () a
Branch :: Tree m a -> Tree n a -> Tree (m,n) a
```

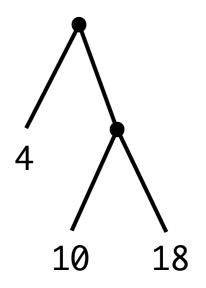
Applicative on Trees with shape

Let's see liftA2 (*) on Trees

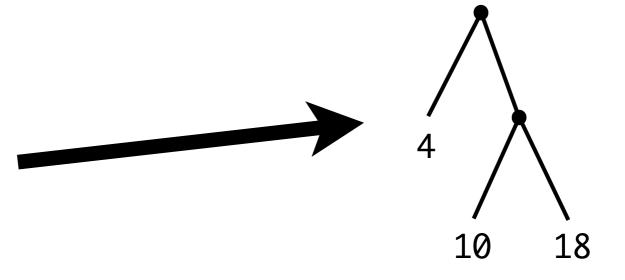








Now just fold (+)
over this to get
dot product



Now just fold (+)
over this to get
dot product

Foldable on Trees with shape

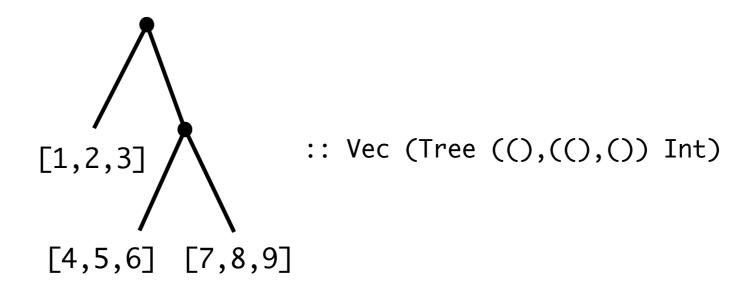
```
instance Foldable (Tree sh) where
  -- foldMap :: (Foldable f, Monoid m) => (a -> m) -> f a -> m
  foldMap f (Leaf a) = f a
  foldMap f (Branch s t) = foldMap f s `mappend` foldMap f t
  -- fold :: (Foldable f, Monoid m) => f m -> m
```

Generic dot product

```
dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a dot x y = foldSum $ liftA2 (*) x y where foldSum = getSum . fold . fmap Sum
```

What is a matrix?

A collection of collections



Generalising dimensions

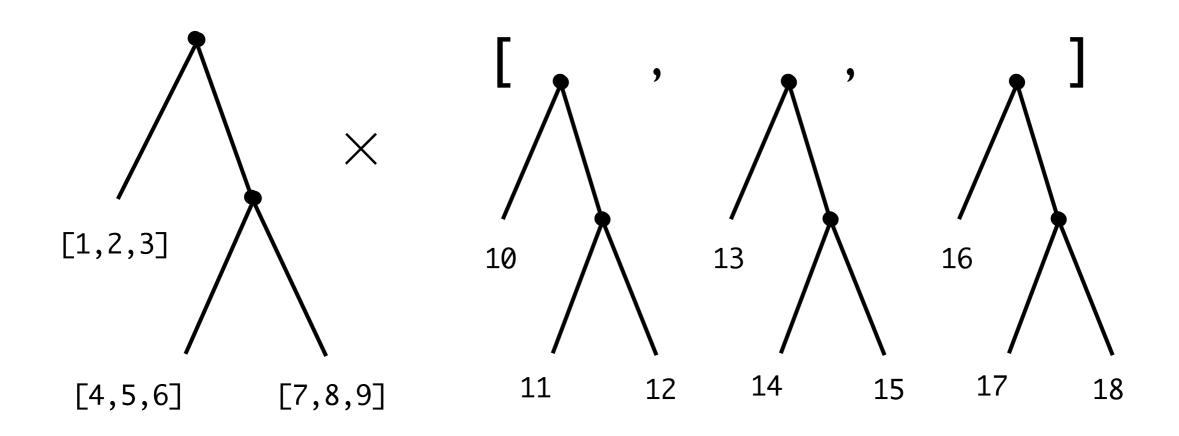
For regular matrices dimensions of input matrices determine dimensions of output matrix

$$m \times n \times n \times p = m \times p$$

For generic matrices type and shape of input matrices determine type and shape of output matrix

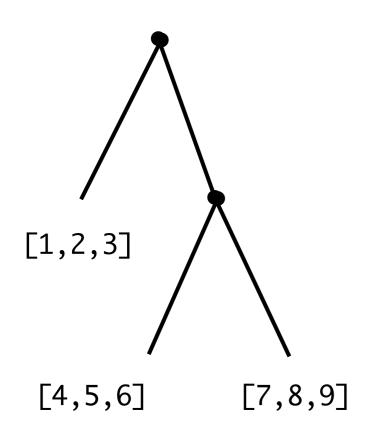
Tree $s \times Vec \ n \times Vec \ n \times Tree \ t = Tree \ s \times Tree \ t$

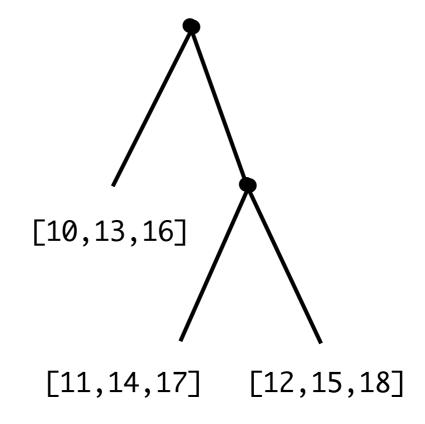
How it's done



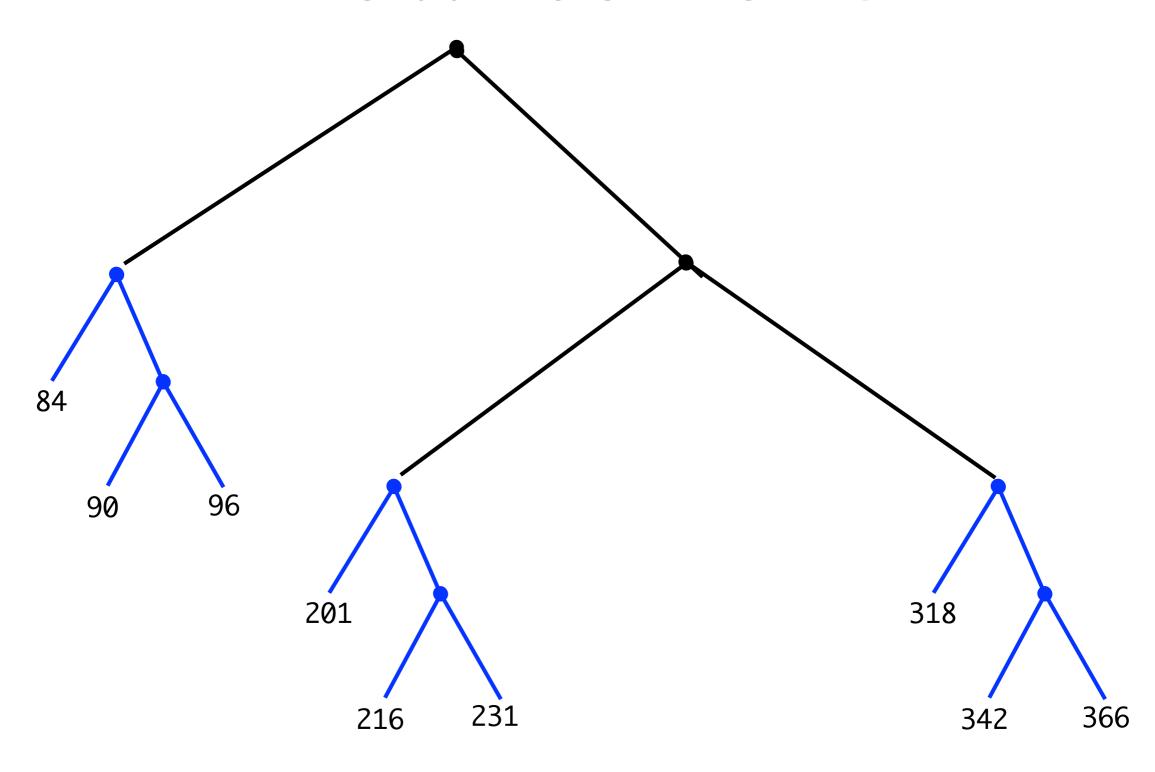
Should get a tree of trees

How it's done





How it's done



DEMO

mmult :: f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)