
Generic Matrix
Multiplication

Sean Seefried

Revision

Dot products
Take two vectors of length n

u = (u1, ..., un) v = (v1, ..., vn)

u ⋅ v = u1v1 + ... + unvn

u ⋅ v = Σ uivi

n

i = 1

or

Dot product is

1
2 3

4
5 6

What about other data
types?

1
2 3

4
5 6

Same shape

What about other data
types?

1
2 3

4
5 6

1*4 + 2*5 + 3*6 = 32
Same shape

What about other data
types?

Shapes

• Encode shape of data structure with
GADTs

• Type system ensures that only values of
same shape can be zipWithed together

For a data structure T

IF

THEN

you can define Foldable and Applicative instances

you have dot product!

Trees with shapes

data Tree sh a where
 Leaf :: a -> Tree () a
 Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Applicative on Trees
with shape

instance Applicative (Tree ()) where
 pure a = Leaf a
 Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
 Applicative (Tree (m,n)) where
 pure a = Branch (pure a) (pure a)
 (Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)

Let’s see liftA2 (*)
on Trees

1

2 3

4

5 6

<*><*>pure (*)

liftA2 (*) on Trees

liftA2 (*) on Trees

1

2 3

4

5 6

<*><*>(*)

(*) (*)

(1*)

(2*) (3*)

4

5 6

<*>

liftA2 (*) on Trees

4

10 18

liftA2 (*) on Trees

4

10 18

liftA2 (*) on Trees

Now just fold (+)
over this to get

dot product

liftA2 (*) on Trees

Now just fold (+)
over this to get

dot product

32

 Foldable on Trees with
shape

instance Foldable (Tree sh) where
 -- foldMap :: (Foldable f, Monoid m) => (a -> m) -> f a -> m
 foldMap f (Leaf a) = f a
 foldMap f (Branch s t) = foldMap f s `mappend` foldMap f t

 -- fold :: (Foldable f, Monoid m) => f m -> m

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldSum $ liftA2 (*) x y
 where foldSum = getSum . fold . fmap Sum

Generic dot product

What is a matrix?
A collection of collections

[1,2,3]

[7,8,9][4,5,6]

:: Vec (Tree ((),((),()) Int)

Generalising
dimensions

m×n ✕ n×p = m×p

For regular matrices dimensions of input matrices
determine dimensions of output matrix

For generic matrices type and shape of input matrices
determine type and shape of output matrix

Tree s×Vec n ✕ Vec n×Tree t = Tree s×Tree t

[, ,]

10

1211

16

1817

13

1514

[1,2,3]

[7,8,9][4,5,6]

╳

How it’s done

Should get a tree of trees

How it’s done

[1,2,3]

[7,8,9][4,5,6]

[10,13,16]

[12,15,18][11,14,17]

84

9690

201

231216

318

366342

How it’s done

transpose :: (Traversable f1, Applicative f2)
 => f1 (f2 a) -> f2 (f1 a)
transpose = sequenceA

mmult :: (Num a, Applicative f1, Applicative f2, Applicative f3,
 Traversable f1, Traversable f2)
 => f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult m1 m2 = fmap (flip (fmap . dot) (transpose m2)) m1

DEMO

mmult :: f1 (f2 a) -> f2 (f3 a) -> f1 (f3 a)

