Generic Matrix
Multiplication

Sean Seefried



Revision



Dot products

Take two vectors of length n

u = (u, ..., Un) V= (v, ..., Vn)
Dot product is

UV =uv: t ...+t UnVn



What about other data
types’

/X /X
2 3 5 ©



What about other data
types’

Samehape



What about other data
types’

Samehape

1*4 + 2*5 + 3%0 = 32



Shapes

® Encode shape of data structure with
GADTs

® Type system ensures that only values of
same shape can be zi1pWithed together



For a data structure T

I F you can define Foldable and Applicative instances

TH E N you have dot product!



Trees with shapes

data Tree sh a where
Leaf c:a -> Tree () a
Branch :: Tree m a -> Tree n a -> Tree (m,n) a




Applicative on Irees
with shape

instance Applicative (Tree ()) where
pure a = Leaf a
Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
Applicative (Tree (m,n)) where
pure a = Branch (pure a) (pure a)
(Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)




Let’s see 1iftA2 (*)
on lrees



LiftA2 (*) on lrees

pure (*) <*> 1/>\ <*> 4/>\
2 3 5 6



LiftA2 (*) on lrees

NN N

GO G



LiftA2 (*) on lrees

A

2*) (3%)



LiftA2 (*) on lrees

/N

10 18



LiftA2 (*) on lrees

NOW jUSt fold (+) >

over this to get

dot product 018



LiftA2 (*) on lrees

Now just fold (+) m 32

over this to get
dot product



Foldable on Trees with
shape

instance Foldable (Tree sh) where
-- foldMap :: (Foldable f, Monoid m) = (a ->m) -> f a -> m
foldMap f (Leaf a) = f a
foldMap f (Branch s t) = foldMap f s "mappend” foldMap f t

-- fold :: (Foldable f, Monoid m) => f m -> m




Generic dot product

dot :: (Num a, Foldable f, Applicative f) = f a -> f a -> a
dot x y = foldSum $ 1iftA2 (*) x y
where foldSum = getSum . fold . fmap Sum




What is a matrix/?

A collection of collections

[1,2,3] :t Vec (Tree (0),(0,0) Int)

[4,5,6] [7,8,9]






Generalising
dimensions

For regular matrices dimensions of input matrices
determine dimensions of output matrix

mxn X nxXp = mxp

For generic matrices type and shape of input matrices
determine type and shape of output matrix

Tree sxVecn X Vec nxTree t = Tree sxTree t



How it’s done

D N4

[4,5,60] [7,8,9]

Should get a tree of trees



How it’s done

[1,2,3] [10,13,16]

[4,5,6] [7,8,9] [11,14,17] [12,15,18]



How it’s done

90 96
201 318

216 231 342 3606



transpose :: (Traversable fl1l, Applicative f2)
=> f1 (f2 a) -> f2 (fl a)
transpose = sequenceA

mmult :: (Num a, Applicative f1l, Applicative f2, Applicative f3,
Traversable f1, Traversable f2)
= fl (f2 a) -> f2 (f3 a) -> f1 (f3 a)
mmult ml m2 = fmap (flip (fmap . dot) (transpose mZ2)) ml




DEMO



mmult :: f1 (f2 a) > f2 (f3 a) -> f1 (f3 a)




