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Hindemith's Problem

● Discarding the old rules
 
 
 
● Replacing them with what?
 
 



Fundamentals of Music

● Notes
○ Melodies

 
● Intervals

○ Harmonies

 
● Chords

○ Progressions

 



Fundamentals of Music

● Sound is waves in air
○ notes have characteristic frequencies

 
● Frequency doubling is special

○ the "octave"

 
● Notes playing together generate interference
 
● Musical instruments aren't perfect

○ each note has "overtones"

 







Overtones

● If f is the root frequency of the note, there 
will be overtones at nf for integer n



Scales

● 12 notes
 
● C .. (c♯/d♭) .. d .. (d♯/e♭) .. e .. f .. 

(f♯/g♭) .. g .. (g♯/a♭) .. a .. (a♯/b♭) .. b 
.. C

 



Our Data Structure
type Pitch = Double
 
data DerivedTone a = O (DerivedTone a) Int 

  | R (DerivedTone a) Int 
  | Base a

 deriving (Show)
 
c :: DerivedTone Pitch
c = Base 64
 



Our Abstract Interface

class Note a where
pitch :: a -> Pitch
overtone :: a -> Int -> a
undertone :: a -> Int -> a

 



Implementations
instance Note Pitch where

pitch = id
overtone p n = p * fromIntegral n
undertone p n = p / fromIntegral n

 
 
instance Note (DerivedTone Pitch) where

pitch (O p n) = fromIntegral n * pitch p
pitch (R p n) = pitch p / fromIntegral n
pitch (Base p) = p
overtone (R p n) m | n == m = p
overtone p n = O p n
undertone (O p n) m | n == m = p
undertone p n = R p n

 



Convenience Methods
instance Eq (DerivedTone Pitch) where

a == b = pitch a == pitch b
 
instance Ord (DerivedTone Pitch) where

a < b = pitch a < pitch b
        a > b = pitch a > pitch b
 
octave x = overtone x 2
 
overtoneRatio over root = 
    flip undertone root . flip overtone over
(//) = overtoneRatio
 



Pythagorean Tuning

C .. G .. D .. A .. E .. B .. F♯

 
 
 
C .. F .. B♭ .. E♭ .. A♭ .. D♭ .. G♭



Pythagorean Tuning
nextTone tone = (3 // 2) tone

prevTone tone = (2 // 3) tone

normalise base tone = if tone > octave base 

                      then normalise base (tone `undertone` 2) 

                      else (

                        if pitch tone < pitch base 

                        then normalise base (octave tone) 

                        else tone)

 

ptones = map (normalise c) $ (take 7 $ iterate nextTone c) ++ 

                             (take 6 . drop 1 $ iterate prevTone c)

 

(pc:pg:pd:pa:pe:pb:pfs:pf:pbb:peb:pab:pdb:pgb :[]) = ptones

 

pscale = pc:pdb:pd:peb:pe:pf:pfs:pgb:pg:pab:pa:pbb:pb:[]

 



Pythagorean Tuning
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Five-Limit Tuning

● Thirds are important
 
● A good major third requires a ratio of 5/4

○ the strongest generated note is 1/4 the root tone

 
● A good minor third requires a ratio of 6/5

○ the strongest generated note is 1/5 the root tone, 
which is two octaves below 4/5, which is a major 
third below the root

 
● Use factors of 2, 3 and 5



Five-Limit Tuning
factorRows = [(1, 9), (1, 3), (1, 1), (3, 1), (9, 1)]
factorCols = [(5, 1), (1, 1), (1, 5)]
 
fltones = map (normalise c) 
          [R (O c (a*a')) (b*b') | (a, b) <- factorRows,

                               (a', b') <- factorCols]
 
(fld1:flbb1:flgb:fla:flf:fldb:fle:flc:flab:flb:flg:fleb:
flfs:fld2:flbb2:[]) = fltones
 
flscale = flc:fldb:fld2:fleb:fle:flf:flfs:flg:flab:fla:
flbb2:flb:[]
 



Five-Limit Tuning

 1/9 1/3 1 3 9

5 D (10/9) A (5/3) E (5/4) B (15/8) F♯ (45/32)

1 B♭ (16/9) F (4/3) C (1/1) G (3/2) D (9/8)

1/5 G♭(64/45) D♭(16/15) A♭(8/5) E♭(6/5) B♭(9/5)



Equal Temperament
ratio = 2 ** (1/12)
etscale = map Base . take 12 $ iterate (* ratio) 64
 

C C♯ D E♭ E F F♯ G A♭ A B♭ B

64 67.81 71.84 76.11 80.63 85.43 90.51 95.89 101.59 107.63 114.04 120.82

   76.8 80   96     



Hindemith's Method
firstRatios base = 
            [result | over <- [1 .. 6], root <- [1 .. 6], 

   let result = (over // root) base,
   result > base, result < octave base]

firstResults =  nub . firstRatios
 

 
 
G (3/2), F (4/3), A (5/3), E (5/4), E♭ (6/5)
 
 
 
 
 



Hindemith's Method
secondRatios base = 
  [result | over <- [1 .. 6], root <- [1 .. 6], root > over,
   let result = octave $ (over // root) base,
   result > base, result < octave base]
secondResults base = nub (secondRatios base) 
                  \\ firstRatios base
 
 

A♭(8/5)



Hindemith's Method
thirdRatios base = 
   [result | tone <- take 4 $ firstResults base, 
    over <- [3 .. 6], root <- [2 .. 6],
    let result = (over // root) tone,
    tone `overtone` over < (base `overtone` 6), 
    result > base, result < octave base]
thirdResults base = (nub (thirdRatios base) 
                 \\ firstRatios base) 
                 \\ secondRatios base
 

D (9/8), B♭(16/9), D♭(16/15), B (15/8)



Hindemith's Method

tritones base = [
overtoneRatio 4 5 (thirdResults base!!1),
overtoneRatio 4 3 (thirdResults base!!2),
overtoneRatio 5 4 (thirdResults base!!0),
overtoneRatio 3 4 (thirdResults base!!3)
]

 
 



tones base = firstResults base ++    
             secondResults base ++ 
             thirdResults base ++ 
  [tritones base !! 1, tritones base !! 2]
 
(g:f:a:e:eb:ab:d:bb:db:b:gb:fs:[]) = tones c
 
scale = c:db:d:eb:e:f:fs:g:ab:a:bb:b:[]
 



Generating Melodies

● Use the relatedness of notes as a measure 
of how strong or resolved a progression 
from one to the next sounds

 
● Start with strong progressions, introduce 

tension by weakening the progressions, 
then bring strong progressions back at the 
end of each 'phrase' of the melody.



More fun

Comparing other scales to Hindemith's



Next Time...

● Intervals
 
● Chords
 
● Chord progressions



Any Questions?


