
Contextual Equivalence and the CIU-Theorem

Ben Lippmeier
University of New South Wales
FP-Syd 2012/3/15

Swapping Bindings

let v1 = x1 in
let v2 = x2 in
x3

let v2 = x2 in
let v1 = x1 in
x3

provided: v1 \notin fv(x2)

rewrite

Hoisting Bindings

(\v1. let v2 = x2
 in x3)

let v2 = x2
(\v1. x3)

rewrite

provided: v1 \notin fv(x2)

Common Sub-Expression Elimination

let v1 = x1 in
let v2 = x1 in
x3

let v1 = x1 in
x3[v1/v2]

rewrite

Equivalence

• “After optimisation, the program should give the same result”

Equivalence

• “After optimisation, the program should give the same result”

• What do we mean by result, given that optimisations can
 reduce the amount of allocation?

Equivalence

• “After optimisation, the program should give the same result”

• What do we mean by result, given that optimisations can
 reduce the amount of allocation?

x1

(store2, x1’)x2

(store1, x1’)
eval

rewrite

(nil, x1)

(nil, x2)
eval

No evaluation under lambdas

(\v1. let v2 = 2 + 3
 in v1 + v2)

let v2 = 2 + 3 in
(\v1. v1 + v2)

let v2 = 5 in
(\v1. v1 + v2)

(\v1. v1 + 5)

rewrite

eval

eval

Only observe termination

x1

(store2, x1’)x2

(store1, x1’)
eval

rewrite

(nil, x1)

(nil, x2)
eval

Only observe termination

(store2, x1’)

(store1, x1’)
eval

(nil, x1)

(nil, x2)
eval

x1

x2

rewrite

Only observe termination

TERM x1

TERM x2

x1

x2

rewrite

Contextual Equivalence

(\v. if x3
 then let v1 = blah in x1
 else x4) x5

(\v. if x3
 then let v1 = blah in x2
 else x4) x5

rewrite

Contextual Equivalence

map (\v. f x3 (g x2 v)) ys

map (\v. f x3 (g x1 v)) ys

rewrite

Contextual Equivalence

map (\v. f x3 (g x2 v)) ys

map (\v. f x3 (g x1 v)) ys

rewrite

Contextual Equivalence

C[x2]

C[x1]

rewrite

Contextual Equivalence

x1 ≡ x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

Contextual Equivalence

x1 ≡ x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
 in x3)

let v2 = x2
(\v1. x3)

rewrite

Contextual Equivalence

x1 ≡ x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
 in x3)

let v2 = x2
(\v1. x3)

≡
ctx

Contextual Equivalence

x1 ≡ x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
 in x3)

let v2 = x2
(\v1. x3)

≡
ctx

hmmmmm

Contextual Equivalence

map (\v. f x3 (g (v + v) v)) ys

map (\v. f x3 (g x1 v)) ys

map (\v. f x3 (g (v + v) v)) ys

C

C[x1]

Closing Substitutions

(\x. x + x) 5 (\x. 2 * x) 5

Closing Substitutions

(\x. x + x) 5 (\x. 2 * x) 5

C[x + x]

Closing Substitutions

(\x. x + x) 5 (\x. 2 * x) 5

5 + 5 2 * 5

10 10

Closing Substitutions

let f = \z.
 let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)
in f 5

let f = \z.
 let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)
in f 5

Closing Substitutions

C[let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)]

C[let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)]

Closing Substitutions

let f = \z.
 let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)
in f 5

let f = \z.
 let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)
in f 5

let v1 = 5 + 1 in
let v2 = 2 * 5 in
g (v1 + v2)

let v2 = 2 * 5 in
let v1 = 5 + 1 in
g (v1 + v2)

Closing Substitutions

let f = \z.
 let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)
in f 100

let f = \z.
 let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)
in f 100

let v1 = 100 + 1 in
let v2 = 2 * 100 in
g (v1 + v2)

let v2 = 2 * 100 in
let v1 = 100 + 1 in
g (v1 + v2)

Closing Substitutions

let f = \z.
 let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)
in f (100 * 90)

let f = \z.
 let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)
in f (100 * 90)

let v1 = 9000 + 1 in
let v2 = 2 * 9000 in
g (v1 + v2)

let v2 = 2 * 9000 in
let v1 = 9000 + 1 in
g (v1 + v2)

Closing Substitutions

let f = \z.
 let v1 = z + 1 in
 let v2 = 2 * z in
 g (v1 + v2)
in f (bar “hello”)

let f = \z.
 let v2 = 2 * z in
 let v1 = z + 1 in
 g (v1 + v2)
in f (bar “hello”)

let v1 = ?? + 1 in
let v2 = 2 * ?? in
g (v1 + v2)

let v2 = 2 * ?? in
let v1 = ?? + 1 in
g (v1 + v2)

Contextual Equivalence (again)

x1 ≡ x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

CIU-Equivalence

x1 ≡ x2

forall C σ. TERM C[σ x1]
 <=> TERM C[σ x2]

ciu

x1 ≡ x2

forall C. TERM C[x1]
 <=> TERM C[x2]

ctx

Closed Instantiation of Use-Equivalence

x1 ≡ x2

forall C σ. TERM C[σ x1]
 <=> TERM C[σ x2]

ciu

x1 ≡ x2

forall C. TERM C[x1]
 <=> TERM C[x2]

ctx

The CIU-Theorem

Contextual Equivalence
and CIU-Equivalence coincide

Proved true for all lambda languages
with uniform semantics!

Uniform Semantics

• Single Step Reduction is Deterministic

• Reduction is preserved by value substitution

• If one expression reduces to another and the first terminates
 then so does the second.

• ... a few others

Uniform Semantics

• Reduction is preserved by value substitution

• Implies that reduction does not look deep within an AST node
 to decide what to do.

 if True then x2 else x3 => x2

 (\v. x1) x2 => x1[x2/v]

References

• Reasoning about Programs with Effects
 Ian Mason, Carolyn Talcott, 1990-1997

• Operational Reasoning for Functions with Local State
 Andew Pitts and Ian Stark, 1998

