Contextual Equivalence and the CIU-Theorem

Ben Lippmeier University of New South Wales FP-Syd 2012/3/15

Swapping Bindings

$$
\begin{aligned}
& \text { let } v 1=x 1 \text { in } \\
& \text { let } v 2=x 2 \text { in } \\
& x 3
\end{aligned} \xrightarrow[\begin{array}{l}
\text { rewrite } \\
\text { let } v 1=x 1
\end{array}]{ } \begin{aligned}
& \text { let } v 2=x 2 \text { in }
\end{aligned}
$$

provided: v1 \notin fv(x2)

Hoisting Bindings

$$
\left(\begin{array}{c}
\text { (} 1 .
\end{array} \begin{array}{l}
\text { let } v 2 \\
\text { in } x 3)
\end{array}=x 2 \xrightarrow{\text { rewrite }} \underset{(\mathrm{v} 1 . \mathrm{x} 3)}{\text { let } \mathrm{v} 2=\mathrm{x} 2}\right.
$$

provided: v1 \notin fv(x2)

Common Sub-Expression Elimination

$$
\begin{aligned}
& \text { let } \mathrm{v} 1=\mathrm{x} 1 \text { in } \xrightarrow{\text { rewrite }} \begin{array}{l}
\text { let } \mathrm{v} 1=\mathrm{x} 1 \text { in } \\
\text { let } \mathrm{v} 2=\mathrm{x} 1 \text { in } \\
\mathrm{x} 3
\end{array}
\end{aligned}
$$

Equivalence

- "After optimisation, the program should give the same result"

Equivalence

- "After optimisation, the program should give the same result"
- What do we mean by result, given that optimisations can reduce the amount of allocation?

Equivalence

- "After optimisation, the program should give the same result"
- What do we mean by result, given that optimisations can reduce the amount of allocation?

No evaluation under lambdas

$$
\begin{aligned}
& \text { (\v1. let v2 }=2+3 \\
& \text { in } \mathrm{v} 1+\mathrm{v} \text {) }
\end{aligned}
$$

let $\mathrm{v} 2=2+3$ in
(\v1. v1 + v2)

let $\mathrm{v} 2=5$ in
(\v1. v1 + v2)
eval

$$
\text { (\v1. v1 + } 5 \text {) }
$$

Only observe termination

x1	(nil, x1)	
rewrite		
x2	(nil, x2)	$\xrightarrow{\text { eval }}\left(\text { store } 2, \mathrm{x} 1^{\prime}\right)$

Only observe termination

Only observe termination

TERM x1

TERM x 2

Contextual Equivalence

$$
\begin{aligned}
& \text { (\v. if } \mathrm{x} 3 \\
& \text { then let } \mathrm{v} 1=\mathrm{blah} \text { in } \mathrm{x} 1 \\
& \text { else } \mathrm{x} 4) \times 5
\end{aligned}
$$

Contextual Equivalence

map (\v. f x3 (g x1 v)) ys
map (\v. f x3 (g x2 v)) ys

Contextual Equivalence

map (\v. f x3 (g x1 v)) ys
rewrite \downarrow
map (\v. f x3 (g x2 v)) ys

Contextual Equivalence

Contextual Equivalence

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\equiv} \mathrm{x} 2
$$

forall C. TERM C[x1] <=> TERM C[x2]

Contextual Equivalence

$$
\begin{aligned}
& \text { (\v1. let } \mathrm{v} 2=\mathrm{x} 2 \xrightarrow{\text { rewrite }} \text { let } \mathrm{v} 2=\mathrm{x} 2 \\
& \text { in } x 3 \text {) (} \mathrm{v} 1 . \mathrm{x} 3 \text {) } \\
& \mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\bar{t}}} \mathrm{x} 2
\end{aligned}
$$

forall C. TERM C[x1] <=> TERM C[x2]

Contextual Equivalence

$\left(\backslash v 1 . \begin{array}{l}\text { let } v 2 \\ \text { in } x 3)\end{array} \quad \mathrm{x} 2 \mathrm{Ct}\right.$$\quad \begin{aligned} & \text { let v2 }=\mathrm{x} 2 \\ & (\text { (vv1. x3) }\end{aligned}$

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\bar{t}}} \mathrm{x} 2
$$

forall C. TERM C[x1] <=> TERM C[x2]

Contextual Equivalence

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\bar{t}}} \mathrm{x} 2
$$

forall C. TERM $C[x 1]<=>$ TERM C[x2]
hmmmmm

Contextual Equivalence

map (\v. f x3 (g x1 v)) ys
map (\v. f x3 (g (v + v) v)) ys
map (\v. f x3 (g (v + v) v)) ys
C

C[x1]

Closing Substitutions

($\mathrm{X} \cdot \mathrm{x}+\mathrm{x}$) 5 ($\mathrm{x} \cdot 2$ * x) 5

Closing Substitutions

($\backslash x . x+x) 5$
 (\x. 2 * x) 5

$C[x+x]$

Closing Substitutions

$$
\begin{array}{cc}
(\backslash x \cdot x+x) 5 & (\backslash x \cdot 2 * x) 5 \\
5+5 & 2 * 5 \\
10 & 10
\end{array}
$$

Closing Substitutions

$$
\begin{array}{rlr}
\text { let } f=\backslash z . & \text { let } f=\backslash z \text {. } \\
& \text { let } v 1=z+1 \text { in } & \text { let } v 2=2 * z \text { in } \\
& \text { let } v 2=2 * z \text { in } & \text { let } v 1=z+1 \text { in } \\
& g(v 1+v 2) & g(v 1+v 2) \\
\text { in } f 5 & \text { in } f 5
\end{array}
$$

Closing Substitutions

$$
\begin{aligned}
& C[\text { let } v 1=z+1 \text { in } \\
& \text { let } v 2=2 * z \text { in } \\
& g(v 1+v 2)]
\end{aligned}
$$

C[let v2 = 2 * z in
let $\mathrm{v} 1=\mathrm{z}+1$ in g (v1 + v2)]

Closing Substitutions

let $f=\backslash z$.

$$
\text { let } v 1=z+1 \text { in }
$$

$$
\text { let } v 2=2 * z \text { in }
$$

$$
g(v 1+v 2)
$$

in $f 5$
let $\mathrm{v} 1=5+1$ in
let $\mathrm{v} 2=2$ * 5 in g (v1 + v2)
let $f=\backslash z$.
let $\mathrm{v} 2=2$ * z in
let $\mathrm{v} 1=\mathrm{z}+1$ in
g ($\mathrm{v} 1+\mathrm{v} 2$)
in $f 5$
let $\mathrm{v} 2=2$ * 5 in
let $\mathrm{v} 1=5+1$ in
g (v1 + v2)

Closing Substitutions

let $f=\backslash z$.
let $\mathrm{v} 1=\mathrm{z}+1$ in
let $\mathrm{v} 2=2$ * z in g (v1 + v2)
in $f 100$
let $f=\backslash z$.
let $\mathrm{v} 2=2$ * z in
let $\mathrm{v} 1=\mathrm{z}+1$ in
g (v1 + v2)
in $f 100$
let v2 = 2 * 100 in
let $\mathrm{v} 1=100+1$ in
g ($\mathrm{v} 1+\mathrm{v} 2$)

Closing Substitutions

let $\mathrm{f}=\backslash \mathrm{z}$.
let $\mathrm{v} 1=\mathrm{z}+1$ in
let $\mathrm{v} 2=2$ * z in g (v1 + v2)
in $f(100$ * 90)
let $\mathrm{v} 1=9000+1$ in
let $\mathrm{v} 2=2$ * 9000 in g (v1 + v2)
let $f=$ z.
let $\mathrm{v} 2=2$ * z in
let $\mathrm{v} 1=\mathrm{z}+1$ in
g (v1 + v2)
in f (100 * 90)
let $\mathrm{v} 2=2$ * 9000 in
let $\mathrm{v} 1=9000+1$ in
g ($\mathrm{v} 1+\mathrm{v} 2$)

Closing Substitutions

let $f=\backslash z$.
let $\mathrm{v} 1=\mathrm{z}+1$ in
let $\mathrm{v} 2=2$ * z in g (v1 + v2)
in f (bar "hello")
let $\mathrm{v} 1=$? ? + 1 in
let $\mathrm{v} 2=2$ * ? ? in
g (v1 + v2)
let $f=$ z.
let $\mathrm{v} 2=2$ * z in
let $\mathrm{v} 1=\mathrm{z}+1$ in
g (v1 + v2)
in f (bar "hello")
let v2 = 2 * ?? in
let $\mathrm{v} 1=$? ? +1 in
g (v1 + v2)

Contextual Equivalence (again)

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\overline{\mathrm{t}}}} \mathrm{x} 2
$$

forall C. TERM C[x1] <=> TERM C[x2]

CIU-Equivalence

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\bar{t}}} \mathrm{x} 2
$$

forall C. TERM C[x1] <=> TERM C[x2]

$$
x 1 \underset{\text { ciu }}{\overline{=}} \mathrm{x} 2
$$

forall C σ. TERM C[σ x1]
$<=>$ TERM C[$\sigma \mathrm{x} 2$]

Closed Instantiation of Use-Equivalence

$$
\mathrm{x} 1 \underset{\mathrm{ctx}}{\overline{\bar{t}}} \mathrm{x} 2
$$

$$
\begin{array}{r}
\text { forall C. TERM C[x1] } \\
<=>\text { TERM C[x2] }
\end{array}
$$

$$
\mathrm{x} 1 \underset{\text { ciu }}{\overline{=}} \mathrm{x} 2
$$

forall C σ. TERM C[σ x1]
$<=>$ TERM C[$\sigma \times 2$]

The CIU-Theorem

Contextual Equivalence and CIU-Equivalence coincide

Proved true for all lambda languages with uniform semantics!

Uniform Semantics

- Single Step Reduction is Deterministic
- Reduction is preserved by value substitution
- If one expression reduces to another and the first terminates then so does the second.
- ... a few others

Uniform Semantics

- Reduction is preserved by value substitution
- Implies that reduction does not look deep within an AST node to decide what to do.
if True then $x 2$ else $x 3=>x 2$

$$
(\backslash v . x 1) x 2 \quad=>x 1[x 2 / v]
$$

References

- Reasoning about Programs with Effects Ian Mason, Carolyn Talcott, 1990-1997
- Operational Reasoning for Functions with Local State Andew Pitts and Ian Stark, 1998

