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Swapping Bindings

let v1 = x1 in
let v2 = x2 in
x3

let v2 = x2 in
let v1 = x1 in
x3

provided: v1  \notin  fv(x2)

rewrite



Hoisting Bindings

(\v1. let v2 = x2
      in x3)

let v2 = x2 
(\v1. x3)

rewrite

provided: v1  \notin  fv(x2)



Common Sub-Expression Elimination

let v1 = x1 in
let v2 = x1 in
x3

let v1 = x1 in
x3[v1/v2]

rewrite
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•  “After optimisation, the program should give the same result”
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Equivalence

•  “After optimisation, the program should give the same result”

•  What do we mean by result, given that optimisations can
 reduce the amount of allocation?

x1

(store2, x1’)x2

(store1, x1’)
eval

rewrite

(nil, x1)

(nil, x2)
eval



No evaluation under lambdas

(\v1. let v2 = 2 + 3
      in  v1 + v2)

let v2 = 2 + 3 in 
(\v1. v1 + v2 )

let v2 = 5 in
(\v1. v1 + v2 )

(\v1. v1 + 5 )

rewrite

eval

eval



Only observe termination

x1

(store2, x1’)x2

(store1, x1’)
eval

rewrite

(nil, x1)

(nil, x2)
eval



Only observe termination

(store2, x1’)

(store1, x1’)
eval

(nil, x1)

(nil, x2)
eval

x1

x2

rewrite



Only observe termination

TERM x1

TERM x2

x1

x2

rewrite



Contextual Equivalence

(\v. if x3 
      then let v1 = blah in x1 
      else x4) x5

(\v. if x3 
      then let v1 = blah in x2
      else x4) x5

rewrite



Contextual Equivalence

map (\v. f x3 (g x2 v)) ys

map (\v. f x3 (g x1 v)) ys

rewrite



Contextual Equivalence

map (\v. f x3 (g x2 v)) ys

map (\v. f x3 (g x1 v)) ys

rewrite



Contextual Equivalence

C[x2]

C[x1]

rewrite
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x1  ≡  x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
      in x3)

let v2 = x2 
(\v1. x3)

rewrite



Contextual Equivalence

x1  ≡  x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
      in x3)

let v2 = x2 
(\v1. x3)

≡
ctx



Contextual Equivalence

x1  ≡  x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx

(\v1. let v2 = x2
      in x3)

let v2 = x2 
(\v1. x3)

≡
ctx

hmmmmm



Contextual Equivalence

map (\v. f x3 (g (v + v) v)) ys

map (\v. f x3 (g x1 v)) ys

map (\v. f x3 (g (v + v) v)) ys

C

C[x1]
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Closing Substitutions

(\x. x + x) 5 (\x. 2 * x) 5

C[x + x]



Closing Substitutions

(\x. x + x) 5 (\x. 2 * x) 5

5 + 5 2 * 5

10 10



Closing Substitutions

let f = \z.
     let v1 = z + 1 in
     let v2 = 2 * z in 
     g (v1 + v2)
in f 5

let f = \z.
     let v2 = 2 * z in     
     let v1 = z + 1 in
     g (v1 + v2)
in f 5



Closing Substitutions

C[let v1 = z + 1 in
  let v2 = 2 * z in 
  g (v1 + v2)]

C[let v2 = 2 * z in     
  let v1 = z + 1 in
  g (v1 + v2)]



Closing Substitutions

let f = \z.
     let v1 = z + 1 in
     let v2 = 2 * z in 
     g (v1 + v2)
in f 5

let f = \z.
     let v2 = 2 * z in     
     let v1 = z + 1 in
     g (v1 + v2)
in f 5

let v1 = 5 + 1 in
let v2 = 2 * 5 in 
g (v1 + v2)

let v2 = 2 * 5 in 
let v1 = 5 + 1 in
g (v1 + v2)



Closing Substitutions

let f = \z.
     let v1 = z + 1 in
     let v2 = 2 * z in 
     g (v1 + v2)
in f 100

let f = \z.
     let v2 = 2 * z in     
     let v1 = z + 1 in
     g (v1 + v2)
in f 100

let v1 = 100 + 1 in
let v2 = 2 * 100 in 
g (v1 + v2)

let v2 = 2 * 100 in 
let v1 = 100 + 1 in
g (v1 + v2)



Closing Substitutions

let f = \z.
     let v1 = z + 1 in
     let v2 = 2 * z in 
     g (v1 + v2)
in f (100 * 90)

let f = \z.
     let v2 = 2 * z in     
     let v1 = z + 1 in
     g (v1 + v2)
in f (100 * 90)

let v1 = 9000 + 1 in
let v2 = 2 * 9000 in 
g (v1 + v2)

let v2 = 2 * 9000 in 
let v1 = 9000 + 1 in
g (v1 + v2)



Closing Substitutions

let f = \z.
     let v1 = z + 1 in
     let v2 = 2 * z in 
     g (v1 + v2)
in f (bar “hello”)

let f = \z.
     let v2 = 2 * z in     
     let v1 = z + 1 in
     g (v1 + v2)
in f (bar “hello”)

let v1 = ?? + 1 in
let v2 = 2 * ?? in 
g (v1 + v2)

let v2 = 2 * ?? in 
let v1 = ?? + 1 in
g (v1 + v2)



Contextual Equivalence (again)

x1  ≡  x2

forall C. TERM C[x1] <=> TERM C[x2]

ctx



CIU-Equivalence

x1  ≡  x2

forall C σ. TERM C[ σ x1 ] 
        <=> TERM C[ σ x2 ]

ciu

x1  ≡  x2

forall C. TERM C[x1] 
      <=> TERM C[x2]

ctx



Closed Instantiation of Use-Equivalence

x1  ≡  x2

forall C σ. TERM C[ σ x1 ] 
        <=> TERM C[ σ x2 ]

ciu

x1  ≡  x2

forall C. TERM C[x1] 
      <=> TERM C[x2]

ctx



The CIU-Theorem

Contextual Equivalence
and CIU-Equivalence coincide

Proved true for all lambda languages
with uniform semantics!



Uniform Semantics

•  Single Step Reduction is Deterministic

•  Reduction is preserved by value substitution

•  If one expression reduces to another and the first terminates
 then so does the second.

•  ... a few others



Uniform Semantics

•  Reduction is preserved by value substitution

•  Implies that reduction does not look deep within an AST node
 to decide what to do.

 if True then x2 else x3  => x2 

   (\v. x1) x2  => x1[x2/v]
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