
From Enumerator to Conduit

Erik de Castro Lopo

February 16, 2012

Erik de Castro Lopo From Enumerator to Conduit



Overview

What is the problem?
Iteratee/Enumerator
The difficult stuff
Conduit

Erik de Castro Lopo From Enumerator to Conduit



What is the problem?

Lazy evaluation and I/O is fundamentally mismatched

aaaaa <- readFile "input"
aaaaprocess a

How much memory does it use?
When does the file handle get closed?
What happens to errors?

Erik de Castro Lopo From Enumerator to Conduit



Iteratee / Enumerator history

First paper by Oleg Kiselyov in 2009
Became a library maintained by John Lato
Another library named Enumerator by John Millikin in 2010
IterIO by David Mazieres in 2011
Conduit by Michael Snoyman in 2011
Pipes by Gabriel Gonzalez in 2012

Erik de Castro Lopo From Enumerator to Conduit



Iteratee / Enumerator concept

Main ideas:
Data is read from and written to I/O in chunks
Stream of chunks pass a set of processing elements
First chunk is completely processed before the second
chunk is read from the input
Stream fusion in the GHC compiler makes it fast

Erik de Castro Lopo From Enumerator to Conduit



Apparently its pretty simple

On StackOverflow, Magnus Therning asks for an introduction or
simple examples for iteratee. The response:

"I learned them by rewriting Oleg’s code.

So that would certainly be one path:

implement a left-fold based IO layer."

- Don Stewart (Aug 23 2009)

Erik de Castro Lopo From Enumerator to Conduit



Magnus then blogs his understanding

And receives a comment:

"If this is all there is to it, why is

there so much hype? It’s just the

standard stream fusion hylomorphism

stuff with a left fold."

- Wren Thornton (Aug 27 2009)

Erik de Castro Lopo From Enumerator to Conduit



Iteratee and Enumerator implementations

The good:
Memory usage for I/O is now bounded

The bad:
Correct handling of file handles etc still uncertain
Error handling still ad-hoc
Client code relies on inversion-of-control
Composition still problematic

Erik de Castro Lopo From Enumerator to Conduit



Example #1 : Enumerator version

Proxy a simple HTTP request:

serveRequest :: Manager -> Request IO
serveRequ -> Iteratee ByteString IO Response
serveRequest m req
a= liftIO $
aaaareturn $ ResponseEnumerator
aaaaaaaaaaa$ \f -> DE.run_
aaaaaaaaaaa$ http req (mkBuilder f) m

mkBuilder ::
aaaa(Status -> RespHeaders -> Builder IO b)
aaaa-> Status -> ResponseHeaders
aaaa-> Iteratee ByteString IO b
mkBuilder f s rh
a= DE.joinI (EL.map fromByteString $$ f s rh)

Erik de Castro Lopo From Enumerator to Conduit



Example #1 : Conduit version

Proxy a simple HTTP request:

serveRequest :: Manager -> Request IO
serveRequest -> ResourceT IO Response
serveRequest mgr req = do
aaaaResponse sc rh body <- http req mgr
aaaareturn $ ResponseSource sc rh
aaaaaaaaaaa$ fmap fromByteString body

Erik de Castro Lopo From Enumerator to Conduit



Example #2 : Enumerator version

Streaming the HTTP POST body from the client to the server
required this helper function:

type BString = ByteString

enumIteratee :: MonadIO m => Int64
a-> (Int -> Iteratee ByteString m BString)
a-> Enumerator BString (Iteratee BString m) c
enumIteratee maxlen takeMax = inner 0
aawhere
aaaa...

Erik de Castro Lopo From Enumerator to Conduit



Example #2 : Conduit version

Conduit version did not require any helper function!

Erik de Castro Lopo From Enumerator to Conduit



Advantages of Conduits over Iteratee / Enumerator

Easier composition
Better resource handling (ResourceT)

Erik de Castro Lopo From Enumerator to Conduit


