
Theoretical Theorem Proving
or An L4.verified Roundup

Thomas Sewell

NICTA

24 July 2010

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 1 / 17

Overview

1 Calculemus!

2 seL4

3 L4.verified artefacts

4 Induction
5 L4.verified proofs

I Correspondence
I Invariants

6 Big questions:
I Is Isabelle/HOL a good functional program?
I Why was it hard?
I What’s seL4 good for? Who can we sell it to?
I What’s L4.verified good for? Are there still bugs?
I How would I do it differently?

Customizable!

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 2 / 17

Calculemus

Calculemus!
Dijkstra used to finish his papers with the injunction “Calculemus!”

Definition:
”Let us calculate!” This way, the 18th century German philosopher
Gottfried Leibniz expressed the hope to provide a method that would
allow people to settle their differences by putting their problems in a
formal language lingua universalis and then finding out who is right
by mechanically applying a simple system of formal rules calculus
ratiocinator.

If you strike out the word ‘universalis’ that’s a pretty good definition
of theorem proving.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 3 / 17

Calculemus

Calculemus!
Dijkstra used to finish his papers with the injunction “Calculemus!”

Definition:
”Let us calculate!” This way, the 18th century German philosopher
Gottfried Leibniz expressed the hope to provide a method that would
allow people to settle their differences by putting their problems in a
formal language lingua universalis and then finding out who is right
by mechanically applying a simple system of formal rules calculus
ratiocinator.

If you strike out the word ‘universalis’ that’s a pretty good definition
of theorem proving.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 3 / 17

Calculemus

Calculemus!
Dijkstra used to finish his papers with the injunction “Calculemus!”

Definition:
”Let us calculate!” This way, the 18th century German philosopher
Gottfried Leibniz expressed the hope to provide a method that would
allow people to settle their differences by putting their problems in a
formal language lingua universalis and then finding out who is right
by mechanically applying a simple system of formal rules calculus
ratiocinator.

If you strike out the word ‘universalis’ that’s a pretty good definition
of theorem proving.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 3 / 17

Liebnitz to Dijkstra

Between Liebnitz and Dijkstra:

Hilbert’s 100 problems to be solved in the 20th century was full of
problems that were part of this grand design.

Gödel’s famous incompleteness theorem scuttled the effort.

Turing’s machines killed it permanently.

Resurrected in the context of programming in the sixties and
seventies.

Never quite gone out of fashion, but never become a big thing either.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 4 / 17

Liebnitz to Dijkstra

Between Liebnitz and Dijkstra:

Hilbert’s 100 problems to be solved in the 20th century was full of
problems that were part of this grand design.

Gödel’s famous incompleteness theorem scuttled the effort.

Turing’s machines killed it permanently.

Resurrected in the context of programming in the sixties and
seventies.

Never quite gone out of fashion, but never become a big thing either.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 4 / 17

Liebnitz to Dijkstra

Between Liebnitz and Dijkstra:

Hilbert’s 100 problems to be solved in the 20th century was full of
problems that were part of this grand design.

Gödel’s famous incompleteness theorem scuttled the effort.

Turing’s machines killed it permanently.

Resurrected in the context of programming in the sixties and
seventies.

Never quite gone out of fashion, but never become a big thing either.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 4 / 17

Liebnitz to Dijkstra

Between Liebnitz and Dijkstra:

Hilbert’s 100 problems to be solved in the 20th century was full of
problems that were part of this grand design.

Gödel’s famous incompleteness theorem scuttled the effort.

Turing’s machines killed it permanently.

Resurrected in the context of programming in the sixties and
seventies.

Never quite gone out of fashion, but never become a big thing either.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 4 / 17

Liebnitz to Dijkstra

Between Liebnitz and Dijkstra:

Hilbert’s 100 problems to be solved in the 20th century was full of
problems that were part of this grand design.

Gödel’s famous incompleteness theorem scuttled the effort.

Turing’s machines killed it permanently.

Resurrected in the context of programming in the sixties and
seventies.

Never quite gone out of fashion, but never become a big thing either.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 4 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics.

My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds.

Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner

, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier

, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Who Cares?

The amended grand effort is to reason logically about programs. This aims
to solve the grand problem of software falling apart all over the place.
Who cares?

Logic of computation tragics. My boss.

Functional programmers of various kinds. Robin Milner, Ben
Lippmeier, Haskell Curry and William Howard

Me.

OS groups

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 5 / 17

Microkernels

The kernel of an OS is the part that runs with the CPU in privileged mode.

Privileged mode is:

1 the only way the kernel can control key hardware, for instance to time
switch between applications.

2 one of many ways that a service can be provided to applications really
fast.

A new idea, or maybe a very old idea, is to focus on (1), giving us
microkernels.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 6 / 17

Microkernels

The kernel of an OS is the part that runs with the CPU in privileged mode.

Privileged mode is:

1 the only way the kernel can control key hardware, for instance to time
switch between applications.

2 one of many ways that a service can be provided to applications really
fast.

A new idea, or maybe a very old idea, is to focus on (1), giving us
microkernels.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 6 / 17

Microkernels

The kernel of an OS is the part that runs with the CPU in privileged mode.

Privileged mode is:

1 the only way the kernel can control key hardware, for instance to time
switch between applications.

2 one of many ways that a service can be provided to applications really
fast.

A new idea, or maybe a very old idea, is to focus on (1), giving us
microkernels.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 6 / 17

Microkernels

The kernel of an OS is the part that runs with the CPU in privileged mode.

Privileged mode is:

1 the only way the kernel can control key hardware, for instance to time
switch between applications.

2 one of many ways that a service can be provided to applications really
fast.

A new idea, or maybe a very old idea, is to focus on (1), giving us
microkernels.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 6 / 17

Issues with Microkernels

Things the microkernel community needed to demonstrate:

1 Performance.

2 Quality.

3 Usability.

Ever tried to build a build system?

Lots of interest in verification of microkernels: L4.verified, VFiasco,
Verisoft, Kit, FLINT.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 7 / 17

Issues with Microkernels

Things the microkernel community needed to demonstrate:

1 Performance.

2 Quality.

3 Usability.

Ever tried to build a build system?

Lots of interest in verification of microkernels: L4.verified, VFiasco,
Verisoft, Kit, FLINT.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 7 / 17

Issues with Microkernels

Things the microkernel community needed to demonstrate:

1 Performance.

2 Quality.

3 Usability.

Ever tried to build a build system?

Lots of interest in verification of microkernels: L4.verified, VFiasco,
Verisoft, Kit, FLINT.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 7 / 17

seL4 Design

seL4 is a “fourth generation” microkernel. Interesting features:

EROS-style capabilities for more or less everything.

Capabilities are used to manage allocation of kernel memory.

CSpace: capabilities to capabilities.

Guts-out.

High-speed L4-style messaging.

Delegation.

Big, complicated, expensive revoke operation.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 8 / 17

seL4 Artefacts

The seL4 kernel was originally implemented as a Haskell prototype.

The Haskell prototype was simplified into an Isabelle/HOL specification.

The Haskell prototype was also hand-translated to produce the C
implementation. Once the implementation was working the prototype fell
out of common use.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 9 / 17

L4.verified artefacts

See another set of slides.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 10 / 17

Induction

I wanted to talk about induction for a couple of reasons.

Proof work gets hard when we become both producer and consumer.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 11 / 17

Induction

I wanted to talk about induction for a couple of reasons.

Proof work gets hard when we become both producer and consumer.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 11 / 17

L4.verified Proof Overview

See another set of slides.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 12 / 17

What was hard?

What was hard?

1 Induction.

2 Scale of the problem.

3 Complexity of seL4.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 13 / 17

What was hard?

What was hard?

1 Induction.

2 Scale of the problem.

3 Complexity of seL4.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 13 / 17

What was hard?

What was hard?

1 Induction.

2 Scale of the problem.

3 Complexity of seL4.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 13 / 17

What was hard?

What was hard?

1 Induction.

2 Scale of the problem.

3 Complexity of seL4.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 13 / 17

Is Isabelle a good functional program?

Is Isabelle a good functional program?

No

*** ML ***
* Classical tactics use proper Proof.context instead of historic types
claset/clasimpset. Old-style declarations like addIs, addEs, addDs operate directly
on Proof.context. Raw type claset retains its use as snapshot of the classical
context, which can be recovered via (put claset HOL cs) etc. Type clasimpset has
been discontinued. INCOMPATIBILITY, classical tactics and derived proof
methods require proper Proof.context.

Makarius

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 14 / 17

Is Isabelle a good functional program?

Is Isabelle a good functional program?

No

*** ML ***
* Classical tactics use proper Proof.context instead of historic types
claset/clasimpset. Old-style declarations like addIs, addEs, addDs operate directly
on Proof.context. Raw type claset retains its use as snapshot of the classical
context, which can be recovered via (put claset HOL cs) etc. Type clasimpset has
been discontinued. INCOMPATIBILITY, classical tactics and derived proof
methods require proper Proof.context.

Makarius

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 14 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system.

See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel.

But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is seL4 good for?

We’re not exactly sure.

Use in most industrial safety settings (aerospace, automotive, medical ...)
would require more than a safe kernel. It would require a software
engineering framework for building a larger safe system. See the usability
problem with microkernels.

Use in secrecy applications would only require a safe kernel. But our proof
doesn’t say anything about information flow and the hardware would
probably shoot us in the foot.

Also CSpaces are hard.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 15 / 17

What is the proof good for?

What is the proof good for? Did we find any bugs?

Yes.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 16 / 17

What is the proof good for?

What is the proof good for? Did we find any bugs?

Yes.

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 16 / 17

How would you do it differently?

Thomas Sewell (NICTA) Theoretical Theorem Proving 24 July 2010 17 / 17

