
Flattening and Replication in Data Parallel Haskell

Ben Lippmeier
University of New South Wales
FP-SYD 2011/05/19

Flat vs Nested Data Parallelism

thingo xs
 = mapP (\x. x + 1) xs

thingo xss
 = mapP (\xs. zipWithP xs ys) xss

• Flat Parallelism: Worker function is sequential.

• Nested Parallelism: Worker function is parallel.

• The Flattening / Vectorisation transform converts
nested parallelism into flat parallelism.

The Flattening Transform

fL :: Array Int -> Array Int
fL xs = xs +L (replicate n 1)
 where n = length xs

g :: Array Int -> Array Int
g ys = fL ys

f :: Int -> Int
f x = x + 1

g :: Array Int -> Array Int
g ys = mapP f ys

The Flattening Transform

fL :: Array Int -> Array Int
fL xs = zipWithP (+) xs (replicate n 1)
 where n = length xs

g :: Array Int -> Array Int
g ys = fL ys

f :: Int -> Int
f x = x + 1

g :: Array Int -> Array Int
g ys = mapP f ys

The Flattening Transform

fL :: Array Int -> Array Int
fL xs = mapP (\x. x + 1) xs

g :: Array Int -> Array Int
g ys = fL ys

f :: Int -> Int
f x = x + 1

g :: Array Int -> Array Int
g ys = mapP f ys

The Flattening Transform

g :: Array Int -> Array Int
g ys = fL ys

gL :: Array (Array Int) -> Array (Array Int)
gL yss = fLL yss

f :: Int -> Int
f x = x + 1

g :: Array Int -> Array Int
g ys = mapP f ys

h :: Array (Array Int) -> Array (Array Int)
h zss = mapP g zss

The Flattening Transform

g :: Array Int -> Array Int
g ys = fL ys

gL :: Array (Array Int) -> Array (Array Int)
gL yss = unconcatP yss (fL (concatP yss))

f :: Int -> Int
f x = x + 1

g :: Array Int -> Array Int
g ys = mapP f ys

h :: Array (Array Int) -> Array (Array Int)
h zss = mapP g zss

Replicating Scalars in Uncomfortable

fL :: Array Int -> Array Int
fL xs = xs +L (replicate n 1)
 where n = length xs

f :: Int -> Int
f x = x + 1

Replicating Arrays is Death

ys :: Array Int
ys = ...

f :: Int -> Int
f i = ys ! i

g :: Array Int -> Array Int
g xs = mapP f xs

fL :: Array Int -> Array Int
fL is = replicate n ys !L is
 where n = length is

g :: Array Int -> Array Int
g xs = fL xs

Replicating Arrays is Death

ys :: Array Int
ys = ...

f :: Int -> Int
f i = ys ! i

g :: Array Int -> Array Int
g xs = mapP f xs

fL :: Array Int -> Array Int
fL is = replicate n ys !L is
 where n = length is

g :: Array Int -> Array Int
g xs = fL xs

Replicating Scalars in Uncomfortable

fL :: Array Int -> Array Int
fL xs = xs +L (replicate n 1)
 where n = length xs

f :: Int -> Int
f x = x + 1

Distribution, not Replication

fL :: Array Int -> Array Int
fL xs = xs +L (distribute 1)

f :: Int -> Int
f x = x + 1

