
Lightweight Domain-Specific Language Processing in Kiama, Anthony Sloane, GTTSE 2009 Tutorial

Anthony M. Sloane

Programming Languages Research Group
Department of Computing, Macquarie University
Sydney, Australia

Anthony.Sloane@mq.edu.au
http://www.comp.mq.edu.au/~asloane
http://plrg.science.mq.edu.au

Embedding a Rewriting DSL in Scala

Supported by The Netherlands NWO projects 638.001.610, MoDSE: Model-Driven
Software Evolution, 612.063.512, TFA: Transformations for Abstractions, and 040.11.001,
Combining Attribute Grammars and Term Rewriting for Programming Abstractions.

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Overview

Strategic programming

Stratego language

Embedding Stratego into Scala

 Rewriting in the Kiama library

Examples from Lambda Calculus evaluation

2

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Strategic Programming

Strategic programming is generic programming using strategies.

A strategy is a generic data-processing action which can traverse into
heterogeneous data structures while mixing uniform and type-specific
behaviour.

The Essence of Strategic Programming
Lämmel, Visser and Visser

3

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Our application area

program transformation

desugaring of high-level language constructs

evaluation by reduction rules

optimisation

source to target translation

Suited for modifying the structure of the program, in contrast to
attribution which usually decorates a fixed structure and is more
suited to program analysis.

4

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Stratego

A strategic programming language based on

primitive match, build, sequence and choice operators

rewrite rules built on the primitives

generic traversal operators to control application of rules

an implementation by translation to C

Deployed for many program transformation problems including DSL
implementation, compiler optimisation, refactoring and web
application development (WebDSL).

http://strategoxt.org http://webdsl.org
5

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Terms

Prefix notation

App (Lam ("x", IntType,
 Opn (AddOp, Var ("x"), Num (1))),
 Num (42))

Let ("x", IntType, Num (42),
 Opn (AddOp, Var ("x"), Num (1)))

Concrete syntax notation

[[(\ x : Int -> x + 1) 42]]

[[let x : Int = 42 in x + 1]]

6

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Rewrite Rules

Evaluation of a function application

App (Lam (x, t, e1), e2) -> Let (x, t, e2, e1)

Semantics of p -> q

match p against the subject term
if the match succeeds,

bind the variables x, t, e1 and e2
build the new term q
q is the new subject term

otherwise,
fail

7

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Match and Build

?p

match subject term against p

if p matches, bind any variables and succeed, leaving the subject
term unchanged

if p does not match, fail

!p

build a new subject term from p, with free variables replaced by
their bindings, always succeed

8

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Combinators (1)

Identity id always succeed, leaving the subject term unchanged

Failure fail always fail

Sequential composition p; q

apply p to the subject term; if it succeeds, apply q to the (possibly
new) subject term, otherwise fail

Guarded choice p < q + r

as for sequential composition, but additionally, if p fails, r is applied
to the original subject term and environment

9

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Combinators (2)

p -> q ?p; !q rewrite rule

p <+ q p < id + q deterministic choice

p + q non-deterministic choice

not (p) p < fail + id negation

<s> p !p; s application

s => p s; ?p binding

Note: some details of the scopes of bindings have been omitted.
10

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Generic Traversals

The strategies seen so far apply only to the current term.

The all, one and some combinators applied to a strategy s,
construct strategies that apply s to all, one or some of the children of
the current term and assemble the rewritten children under the
original constructor, provided that the rewrites succeed.

 all one topdown oncebu

 (from The Essence of Strategic Programming)

11

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Strategy library examples

 topdown (s) = s; all (topdown (s))

 oncebu (s) = one (oncebu (s) <+ s)

 oncetd (s) = s <+ one (oncetd (s))

 beloweq (s, t) = oncetd (t; oncetd (s))

 untileq (s, t) = s; t <+ one (untileq (s, t))

12

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

The Kiama Library

An experiment in embedding language processing paradigms in the
Scala programming language.

Paradigms supported at present:

strategy-based term rewriting (this talk)

dynamically-scheduled attribute grammars

abstract state machines (in progress)

13

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Scala Programming Language

Odersky et al, Programming Methods Laboratory, EPFL, Switzerland

Main characteristics:

object-oriented at core with functional features

statically typed, local type inference

scalable: scripting to large system development

runs on JVM, interoperable with Java

http://www.scala-lang.org

14

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Strategy

A transformation of a term that either

succeeds producing a new term, or

fails

 abstract class Strategy extends (Term => Option[Term])

 abstract class Option[A]
 case class Some[A] (val a : A) extends Option[A]
 case object None extends Option[Nothing]

 Term is anything that implements the Product interface (needed for
 generic traversals).

15

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Lambda Calculus Term Syntax

 type Idn = String

 abstract class Exp

 case class Num (value : Int) extends Exp
 case class Var (name : Idn) extends Exp
 case class Lam (name : Idn, tipe : Type, body : Exp)
 extends Exp
 case class App (l : Exp, r : Exp) extends Exp
 case class Opn (op : Op, left : Exp, right : Exp)
 extends Exp
 case class Let (name : Idn, tipe : Type, exp : Exp,
 body : Exp) extends Exp

16

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Term Examples

 // 1 + 3

 val a = Opn(AddOp,Num(1),Num(3))

 // \x : Int . x + y

 val b = Lam("x",IntType,Opn(AddOp,Var("x"),Var("y")))

 // (\x : Int -> Int . x 5) 7

 val c = App(Lam("x",FunType(IntType,IntType),
 App(Var("x"),Num(5))),
 Num(7))

17

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Combining Strategies

Methods of the Strategy class allow strategies to be combined.

 p <* q sequence

 p < q + r guarded choice

 p <+ q deterministic choice

Scala has a flexible naming convention for methods and allows the
period to be omitted in a call.

 p <+ q <* r is just (p.<+(q)).<*(r)

18

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Combinator Implementation

abstract class Strategy ... { p =>

def apply (r : Term) : Option[Term]

 def <* (q : => Strategy) : Strategy =
 new Strategy {
 def apply (t1 : Term) =
 p (t1) match {
 case Some (t2) => q (t2)
 case None => None
 }
 }
...

}

19

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Applying Strategies

A strategy is just a function, so it can be applied directly to a term.

 val s : Strategy
 val t : Term
 s (t)

rewrite can be used to ignore failure.

 def rewrite (s : => Strategy) (t : Term) : Term

 rewrite (s) (t)

20

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Lifting to Strategies

Function values can be usefully lifted to strategies.

 def strategyf (f : Term => Option[Term]) : Strategy

 val failure = strategyf (_ => None)
 val id = strategyf (t => Some (t))

 Implicit lifting for common cases.

 implicit def termToStrategy (t : Term) =
 strategyf (_ => Some (t))

 implicit def optionToStrategy (o : Option[Term]) =
 strategyf (_ => o)

21

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Rewrite Rules

Rewrite rules are defined by Scala partial functions.

 def rule (f : PartialFunction[Term,Term]) : Strategy

 Beta reduction using Scala's case syntax for partial functions.

 val beta =
 rule {
 case App (Lam (x, t, e1), e2) =>
 Let (x, t, e2, e1)
 }

22

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

More Rewriting Rules

 val arithop =
 rule {
 case Opn (op, Num (l), Num (r)) =>
 Num (op.eval (l, r))
 }

 def term (t : Term) =
 rule {
 case `t` => t
 }

23

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Queries

A query is run for its side-effects.

 def query[T] (f : PartialFunction[Term,T]) : Strategy

 A query to collect variable references.

 def variables (e : Exp) : Set[String] = {
 var vars = Set[String]()
 everywheretd (query {
 case Var (s) => vars += s
 }) (e)
 vars
 }

24

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Name Scoping

Stratego version of strategy to look for a specific subterm:

 issubterm =
 ?(x,y); where (<oncetd(?x)> y)

Kiama version:

 val issubterm : Strategy =
 strategy {
 case (x : Term, y : Term) =>
 where (oncetd (term (x))) (y)
 }

25

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Library Strategies

 def topdown (s : => Strategy) : Strategy =
 s <* all (topdown (s))

 def attempt (s : => Strategy) : Strategy =
 s <+ id

 def repeat (s : => Strategy) : Strategy =
 attempt (s <* repeat (s))

 def reduce (s : => Strategy) : Strategy = {
 def x : Strategy = some (x) + s
 repeat (x)
 }

26

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Lambda Calculus with Meta-level Substitution

 def eval (exp : Exp) : Exp =
 rewrite (s) (exp)

 val s = reduce (beta + arithop)

 val beta =
 rule {
 	 case App (Lam (x, _, e1), e2) =>
 substitute (x, e2, e1)
 	 }

 def substitute (x : Idn, e2: Exp, e1 : Exp) : Exp

27

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Lambda Calculus with Explicit Substitution

 val s = reduce (lambda)

 val lambda =
 beta + arithop + subsNum + subsVar +
 subsApp + subsLam + subsOpn

 val beta =
 rule {
 case App (Lam (x, t, e1), e2) =>
 Let (x, t, e2, e1)
 }

28

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Explicit Substitution

 val subsLam =
 rule {
 case Let (x, t1, e1, Lam (y, t2, e2))
 if x == y =>
 Lam (y, t2, e2)
 case Let (x, t1, e1, Lam (y, t2, e2)) =>
 val z = freshvar ()
 Lam (z, t2,
 Let (x, t1, e1,
 Let (y, t2, Var (z), e2)))
 }

29

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Congruences (work in progress)

 Apply strategies to the components of a particular term structure.

 Stratego

 App (s1, s2)

 Kiama:

 AppC (s1, s2)

 def AppC (s1 : => Strategy, s2 : => Strategy) =
 rulefs {
 case _ : App =>
 congruence (s1, s2)
 }

30

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Eager and Lazy Evaluation

 Eager

 val s : Strategy =
 attempt (AppC (s, s) + LetC (id, id, s, s) +
 OpnC (id, s, s)) <*
 attempt (lambda <* s)

 Lazy (no sharing)

 val s : Strategy =
 attempt (AppC (s, id) + LetC (id, id, id, s) +
 OpnC (id, s, s)) <*
 attempt (lambda <* s)

31

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Conclusion

The rewriting part of Kiama is around 1000 lines of Scala code,
including comments and a largish strategy library.

The experiment shows the clear tradeoff between the lightweight
nature of embedding vs analysis and optimisation opportunities from a
separate language.

Ongoing activities:

Congruences
Types for strategies
Larger use cases, performance and scalability
Concrete syntax
Correctness of semantics of embedding

32

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Further Reading

Kiama http://kiama.googlecode.com, lambda2 example

Stratego http://strategoxt.org

Domain-Specific Language Engineering. Visser, GTTSE 2007
Program Transformation with Stratego/XT. Visser, DSPG 2004
Building Interpreters with Rewriting Strategies. Dolstra and Visser,
LDTA 2002

Scala http://www.scala-lang.org

Programming in Scala, Odersky. Spoon and Venners, Artima, 2008

33

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Extras

34

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Explicit Substitutions

 val subsNum =
 rule {
 case Let (_, _, _, e : Num) => e
 }

 val subsVar =
 rule {
 case Let (x, _, e, Var (y)) if x == y => e
 case Let (_, _, _, v : Var) => v
 }

35

Embedding a Rewriting DSL in Scala, Anthony Sloane, fp-syd, Nov 2009

Explicit Substitution (2)

 val subsApp =
 rule {
 case Let (x, t, e, App (e1, e2)) =>
 App (Let (x, t, e, e1), Let (x, t, e, e2))
 }

 val subsOpn =
 rule {
 case Let (x, t, e1, Opn (op, e2, e3)) =>
 Opn (op, Let (x, t, e1, e2),
 Let (x, t, e1, e3))
 }

36

