
The Poisoning Problem

Ben Lippmeier
Australian National University
FP-SYD 2009/06/18

What is the type of x in this expression?

if b then 5
 else x

What is the type of x in this expression?

if b then (5 :: Int)
 else x

What is the type of x in this expression?

if b then (5 :: Int)
 else (x :: Int)

Both alternatives of an if have the same type.

Γ ⊦ t2 :: T Γ ⊦ t3 :: TΓ ⊦ t1:: Bool

Γ ⊦ if t1 then t2 else t3 :: T

pi is a useful constant...

pi = 3.1415926535...

... which is used in a useful program.

pi = 3.1415926535...

fun
 = do
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi

total is updated, so it must be Mutable...

pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi

total is updated, so it must be Mutable...

pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi same type

... and pi becomes Mutable also.

pi :: Mutable r => Float r
pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi same type

... and pi becomes Mutable also.

pi :: Mutable r => Float r
pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi

OH NOES!

... and pi becomes Mutable also.

pi :: Mutable r => Float r
pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi

the type of pi is poisoned

OH NOES!

Drinking from the well.

pi :: Mutable r => Float r
pi = 3.1415926535...

e = 2.71828183...

thing
 = if b then pi
 else e

Drinking from the well.

pi :: Mutable r => Float r
pi = 3.1415926535...

e = 2.71828183...

thing
 = if b then pi
 else e same type

Drinking from the well.

pi :: Mutable r => Float r
pi = 3.1415926535...

e :: Mutable r => Float r
e = 2.71828183...

thing
 = if b then pi
 else e same type

POISONED!

pi is supposed to be constant.

pi :: Const s => Float s
pi = 3.1415926535...

total still has to be Mutable...

pi :: Const s => Float s
pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi

... but what type do we give the result?

pi :: Const s => Float s
pi = 3.1415926535...

fun
 = do total :: Mutable r => Float r
 total = 0
 ...
 total := total + 5
 ...
 if b then total
 else pi :: ??????

A new type for the result.

pi :: Const s => Float s
total :: Mutable r => Float r

(if b then total
 else pi)
 :: ??????

A new type for the result.

pi :: Const s => Float s
total :: Mutable r => Float r

(if b then total
 else pi)
 :: ??????

pi and total are in
different regions

A new type for the result.

pi :: Const s => Float s
total :: Mutable r => Float r

(if b then total
 else pi)
 :: (r <: q, s <: q)
 => Float q

the result could be in either region

A new type for the result.

pi :: Const s => Float s
total :: Mutable r => Float r

(if b then total
 else pi)
 :: (r <: q, s <: q, Blocked q)
 => Float q

the result could be in either region
and either constant or mutable

A new type for the result.

pi :: Const s => Float s
total :: Mutable r => Float r

(if b then total
 else pi)
 :: (r <: q, s <: q, Blocked q)
 => Float q

the result could be in either region
and either constant or mutable

and you can’t update it.

Further Reading

• Witnessing Purity, Constancy and Mutability
Ben Lippmeier
Submitted to APLAS 2009.

• Once Upon a Polymorphic Type
Keith Wansbrough, Simon Peyton Jones
POPL, 1999.

• Monads, Effects and Transformations
Nick Benton and Andrew Kennedy
Electronic Notes in Theoretical Computer Science, 1999.

