AT

The Disciplined Disciple Compiler

Ben Lippmeier
Australian National University

PJ 2003: Wearing the Hair Shirt

What really matters?

Purity and monads
Type classes
Sexy types

<

What is purity, anyway?

e Order of evaluation does not matter when reducing a term.

(AX. double x) (succ 3)

call-by-name / \call by-value

double (succ 3) (AX. double x) 4

NS

double 4

l

3

Order matters for functions with “side-effects”

¢ |O actions affect the outside world.

greet name
= do putStr (“hello " ++ name)
putStr “have a nice day”

checkStatus ()

= 1f 1nTrouble ()
then launchMissles ()
else eatCake ()

Order matters when accessing mutable data
e Sometimes the desired sequence is explicit in the source program.

double x -
create an object

Z = X + 1 «—— modify the object

Z * X
\ read the object

e But sometimes not - especially after inlining.

f x =g (do { x++; x }) X

Uncontrolled side effects are bad news

e Bad for optimisation...

map £ (map g xs) == map (f . g) Xs

a rewrite to save constructing and collecting an entire list
but it only works when ‘> and/or ‘g’ are pure

Uncontrolled side effects are bad news

e _..and bad for code quality.

somethingHarmless :: String -> ()

does this write to the screen”
access the file system?
modify a global variable?

create shared state”
can | run it in parallel with X"
can it throw an exception?
allocate memory”
Kill my dog”?

Haskell: pure(-ly) functional programming

e Deep in the heart of the GHC type inferencer...

data TcTyVarDetails
= SkolemTv SkolemInfo
| MetaTv BoxInfo MetaDetails)

Let’s not pretend that effects aren’t
needed to write real programs!

Why destructive update matters

e Update plays a critical role in the abstraction and
performance of code.

¢ To modify NiceOb7j purely we must:
- know how the container works.
- traverse the tree down to the desired node.
- reallocate all nodes back to the root.

e Advanced data structures will only get us so much.
Data.Map is a binary tree.
For n = 1000, the tree is 10 levels deep.

things :: Map Obj
things = Node 23

\

Node 42

/

Node 28

\

Node 35

/

Node 29

\

Node 34

/

Node 32

\

Node 33

}

» NiceObj

Solution 1: Thread the world

e A phantom world token is passed around explicitly, providing the required
data dependencies.

greet name world
= let world2 = putStr ... world
world3 = putStr ... world?2
in world3

e Simple, easy to implement. Used in Clean.

e Tedious. Error prone. Not fun to program with.

Solution 1.1: State monads

e Hide the world threading behind a data type.

type State
return x = As. (s,

bind m £ = As. let (s’, X) =m s
in (f x) s’

e Syntactic sugar allows us to express uses of return/bind with do{..} notation.

e Can use same structure to define exactly what sequencing means for other
types too: Maybe, Lists, Parsers, Exceptions ...

State monads aren’t all unicorns and candy

¢ But monads change the types of functions, so can be hard work with...

map :: (a => b) -> [a] -> [b]
mapM :: Monad m => (a -> m b) -> [a] -> m [b]

filter vs filterM lookup vs lookupM

zipWith vs zipWithM

e They can have a substantial overhead at runtime.
In C parlance: every semi-colon is now a function call.

e State monads over sequence non-interfering computations.

Full Circle: Make the state monad implicit

e Effect typing is used to determine what operations must be sequenced.

e Monad style:

putStr

o Effect style:

putStr :: String -(!Console)> ()

putStr :: String -(!el)> ()
:— lel = !Console

Full Circle: Allow arbitrary destructive update

e Allow, but track it carefully.

updatelInt
:: forall 2rl 3r2
. Int %rl =-> Int %3r2 -(lel)> ()
:— lel = 1{ IRead %r2; Write %rl }
, Mutable %rl

¢ Region constraints track what data is Mutable and what is Const

Higher order functions

e Effect variables reveal when function arguments might be called.

map :: forall a b %rl 2r2 !lel
(a -(!el)> b) -> List %rl a -(!e2)> List %r2 b
:— le2 = { !Read %rl; !el }

map £ [] =[]
map £ (x:xs) = f£ : map f xs

Type elaboration

* The types contain lots of low level detail...
... but we usually don’t have to bother with it.

map :: (a -> b) -> [a] -> [b]

map £ [] =[]
map f (x:xs) = f x : map £ xs

e The extra effect and region information is orthogonal to the shape of the type.
The compiler can fill this in behind the scenes.

¢ \\e need to specify it when importing foreign functions.

¢ \We need to be aware of it when mixing laziness and side effects.

—ven higher order functions

* The types of functions of order > 3 have extra constraints on effect variables.

succ :: Int -> Int
succ x = x + 1
third £ = succ (f succ)

third
forall %r0 %rl %r2 %r3 !e0 lel
((Int %r2 —-(!el)> Int %r3) =-(!e0)> Int 2r0) -(!e2)> Int 3rl
:— le2 = 1! {!e0; !Read %r0}
lel :> Read %r2

\ Effect el is ‘at least’ |Read %r2

¢ \When was the last time you used a 3rd order function?

4

e Not much test code around...

Fuzz testing for completeness issues...

e | ack of H.O test code necessitates automatic generation.

vd = \v5 -> v5 23 (\v6 -> v6 (\v7 => ()) ())

FREAKOUT in Core.Reconstruct
applyTypeT: error in type application.
in application: (\/ !eTC4 :> !{!eTC7; !eTC5} :: ! ...) (!PURE)
type: !PURE
is not :> !{!eTC7; !eTC5}

Inferred type for v4 was:

vd :: forall tTC393 tTC399 v7 %rTCO
!eTCl !eTC3 !eTC4 !eTC5 !eTC7 !eTSO
ScTC3 ScTC6 ScTSO0 ScTS1 S$ScTS2 $ScTS3
(Int %rTCO -(!eTC3 $cTS3)> (((v7 —-(!eTSO0 ScTC6)> Unit)
—-(!eTC7 $cTS1)> Unit -(!eTC5 S$ScTs0)> tTC399)
~(!eTC4 $cTC3)> tTC399) -(!eTCl $cTS2)> tTC393)
-(!'eTCO0 $cTCO0)> tTC393
:— !eTCO = 1 {!eTC3; !eTCl}
leTC4 :> 1 {!eTC7; !eTC5}

: ScTCO = $cTC3 \ v5 rTerererw

Shape constraints

e If the type of (==) required its arguments to have the same type
... then we couldn’t compare Mutable with Const data.

(==) :: a -> a -> Bool
X ¢: Int %rl :-= Mutable %rl «—____ unification makes ¢r1l == %r2

y :: Int %r2 :- Const %r2 «— But the result can’t be both
Mutable and Const

1if x ==y then

e The Shape constraint forces its arguments to have the same overall shape,
but allows their regions to vary.

(==) :: a -> b -> Bool
:— Shape2 a b

=Xplicit Laziness

e Disciple uses strict/call-by-value evaluation order by default
Laziness in introduced explicitly. Thunks are forced implicitly.

mapLS :: (a -> b) -> [a] -> [Db] (LS == lazy spine)
mapLS f [] = []
mapLS f (x:xs) = (:) (f x) (mapLS @ f xs)

mapLE :: (a -> b) -> [a] -> [Db] (LE == lazy elements)
mapLE f [] = []
mapLE f (x:xs) = (:) (f @ x) (mapLE f xs)

e | azy and Direct objects are interchangeable.
Knowing that an object will never be a thunk is a big win for optimisation.

Purification of effects

e Suspending a function application purifies its visible effects.

suspendl :: forall a b lel
. (a -(!el)> b) -=> a -> b
:— Pure l!el, LazyH b

forall %rl %r2
Int 3rl —-(l!el)> Int 3r2
lel = !Read %rl

lazySucc :: forall 3rl %r2
Int 3rl -> Int 3r2

:— Const %rl, Lazy 3r2

lazySucc x = suspendl succ X

Closures track data sharing

fun :: forall %rl %r2

() => () =-(Scl)> (Int %rl, Int %r2)

t— Scl = x : %r2
‘x’ Is shared between calls to inner

fun ()
= let x = 5

inner () = (23, X)

in lnner

fun2 :: forall %rl
() =(S$Scl)> (Int %rl, Int %rsS)

t— Scl = x : %rS \

fun2 = fun () %rS is not quantified in the type for fun2.
it has global lifetime

Some type rules...

T T = K|

I'FvaxKeTl
I'Fia = K
(TyFun) g Cror %

(TyVar)
The Dy 2 Dy o ox (TyData)
'k V(e JE) 1. D)+ (TyAlB) 'k (Va:: K. D) % (TyAll)
I' Fx Read r iz ! (Read) I' Fxconst R :: Const r (Const)
I' b Writer = ! (Write) I' Fxmutable r :: Mutable r
I' F¢ pure L :: Pure L (Pure)

I' =« W :: Const r

Purify
T purily (Read B) W = Pure Read 7))

'k Wy o Pue By T Fx Wo o Pure B
I' Fx pjoin Wy Wy i Pure (Ey V E»)

' CcCily, T'ET2ETs
=Ty C13

(PureJoin)

I' = TCT (SubRefl) (SubTrans)

'+ SCT (SubTop) ' = LCT (SubBot)

' ECF
' EFC FVE

'-ECF T'FECF

Join2
T F E VE,CF (Join2)

(Joinl)

r-ncs TI'kFSCT
'+ E CE,

2 aJEel
i i (SubFun)
'+ Sl i 52 |; Tl - Tz

m (SubVar)

I'= Dy C D,y

I' = (Va: K. Dy) € Va:: K. Dy (SubAll)

F, (L;E |_D1[;D_)

FFvadE) K D, C VadE) K D, SuPAID)

Eq
Fl—tl s T11—>T12;E1
I'-ty oo 1h 5 Es

F,Ll.‘lliTl}_t‘_)IZT_);E I_‘I_T_)ET“

(Abs) (App)

(Mutable)

'+t ty
2T s EyVE>VE,

TF M uTits) o T 5Ty L

'+t = (V(Ll 2 K. Tlg) ; Ey
T |_K Tz . I(ll
I' - (tl Tz) o [(ll — T_)] Tll ; El

Clay = K| F ty = 15 5 Ey
r |_A((Ll - Tl) . I(l t‘_)
::V((ll ; Tl) . I(l. Tz ; E2

(AbsT)

Clay =T F 6y =T 5 By
1“[;171 n Tl] Fto o Th 5 Eo

I' (let ry =t in t;g) w1y s E1V Es (Let)

Dlw = Wiy ri 2% F o= Ty 5 B
W; well f ounded
r & free(T))
I' - (letregion ry {w; = Wi} in t;) = 1 ;5 Ey

(LetRegion)

'ty =Ty By
'ty =155 Fs I' Ft :: Bool Ry ; Ey
I' - (if) then t2 else t3) = T
s By V EyVRead IRy

(IfThenElse)

'ty i Cp Ry 5 En
'+ t3 :: C. Ry 5 Es I' Fx W) :: Mutable 7o
I' - (update, Wi t2 t3) == ()
; EoV E3VRead Ry VWrite R,

(Update)

rl_tg . TzlﬁTzQ;El
'ty 1o 5 Es
r I—(suspend Wi to t3) w3 EYV Es

I' Fx W) @ Pure E»

(Suspend)

'k Ry = %

Constant
'k (cyp Ry) =C Ry L (Constant)

(AppT)

X styrene

X! Clock Fractal

