

The Disciplined Disciple Compiler

Ben Lippmeier
Australian National University

SPJ 2003: Wearing the Hair Shirt

What is purity, anyway?

• Order of evaluation does not matter when reducing a term.

(λx. double x) (succ 3)

double (succ 3)

double 4

8

(λx. double x) 4

call-by-valuecall-by-name

Order matters for functions with “side-effects”

• IO actions affect the outside world.

checkStatus ()
 = if inTrouble ()
 then launchMissles ()
 else eatCake ()

greet name
 = do putStr (“hello ” ++ name)
 putStr “have a nice day”

Order matters when accessing mutable data

• Sometimes the desired sequence is explicit in the source program.

• But sometimes not - especially after inlining.

double x
 = do z = 1
 z := x + 1
 z * x

f x = g (do { x++; x }) x

create an object

modify the object

read the object

Uncontrolled side effects are bad news

• Bad for optimisation...

map f (map g xs) == map (f . g) xs

a rewrite to save constructing and collecting an entire list
but it only works when ‘f’ and/or ‘g’ are pure

Uncontrolled side effects are bad news

• ...and bad for code quality.

somethingHarmless :: String -> ()

does this write to the screen?
access the file system?

modify a global variable?
create shared state?

can I run it in parallel with X?
can it throw an exception?

allocate memory?
kill my dog?

Haskell: pure(-ly) functional programming

• Deep in the heart of the GHC type inferencer...

data TcTyVarDetails
 = SkolemTv SkolemInfo
 | MetaTv BoxInfo (IORef MetaDetails)

Let’s not pretend that effects aren’t
needed to write real programs!

Why destructive update matters

• Update plays a critical role in the abstraction and
performance of code.

• To modify NiceObj purely we must:
 - know how the container works.
 - traverse the tree down to the desired node.
 - reallocate all nodes back to the root.

• Advanced data structures will only get us so much.
Data.Map is a binary tree.
For n = 1000, the tree is 10 levels deep.

things = Node 23

Node 28

Node 42

Node 35

NiceObj
ref :: Ref Obj

things :: Map Obj

ref = *

Node 29

Node 34

Node 32

Node 33

Solution 1: Thread the world

• A phantom world token is passed around explicitly, providing the required
data dependencies.

• Simple, easy to implement. Used in Clean.

• Tedious. Error prone. Not fun to program with.

greet name world
 = let world2 = putStr ... world
 world3 = putStr ... world2
 in world3

Solution 1.1: State monads

• Hide the world threading behind a data type.

• Syntactic sugar allows us to express uses of return/bind with do{..} notation.

• Can use same structure to define exactly what sequencing means for other
types too: Maybe, Lists, Parsers, Exceptions ...

type State s a = (s -> (s, a))

return x = λs. (s, x)
bind m f = λs. let (s’, x) = m s
 in (f x) s’

State monads aren’t all unicorns and candy

• But monads change the types of functions, so can be hard work with...

• They can have a substantial overhead at runtime.
 In C parlance: every semi-colon is now a function call.

• State monads over sequence non-interfering computations.

map :: (a -> b) -> [a] -> [b]
mapM :: Monad m => (a -> m b) -> [a] -> m [b]

filter vs filterM lookup vs lookupM

zipWith vs zipWithM

Full Circle: Make the state monad implicit

• Effect typing is used to determine what operations must be sequenced.

• Monad style:

• Effect style:

putStr :: String -> IO ()

putStr :: String -(!Console)> ()

putStr :: String -(!e1)> ()
 :- !e1 = !Console

Full Circle: Allow arbitrary destructive update

• Allow, but track it carefully.

• Region constraints track what data is Mutable and what is Const

updateInt
 :: forall %r1 %r2
 . Int %r1 -> Int %r2 -(!e1)> ()
 :- !e1 = !{ !Read %r2; Write %r1 }
 , Mutable %r1

Higher order functions

• Effect variables reveal when function arguments might be called.

map :: forall a b %r1 %r2 !e1
 . (a -(!e1)> b) -> List %r1 a -(!e2)> List %r2 b
 :- !e2 = { !Read %r1; !e1 }

map f [] = []
map f (x:xs) = f x : map f xs

Type elaboration

• The types contain lots of low level detail...
 ... but we usually don’t have to bother with it.

• The extra effect and region information is orthogonal to the shape of the type.
The compiler can fill this in behind the scenes.

• We need to specify it when importing foreign functions.

• We need to be aware of it when mixing laziness and side effects.

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Even higher order functions

• The types of functions of order ≥ 3 have extra constraints on effect variables.

• When was the last time you used a 3rd order function?

• Not much test code around...

succ :: Int -> Int
succ x = x + 1
third f = succ (f succ)

third
 :: forall %r0 %r1 %r2 %r3 !e0 !e1
 . ((Int %r2 -(!e1)> Int %r3) -(!e0)> Int %r0) -(!e2)> Int %r1
 :- !e2 = !{!e0; !Read %r0}
 , !e1 :> !Read %r2

Effect !e1 is ‘at least’ !Read %r2

Fuzz testing for completeness issues...

• Lack of H.O test code necessitates automatic generation.

FREAKOUT in Core.Reconstruct
 applyTypeT: error in type application.
 in application: (\/ !eTC4 :> !{!eTC7; !eTC5} :: ! -> ...) (!PURE)
 type: !PURE
 is not :> !{!eTC7; !eTC5}

Inferred type for v4 was:

 v4 :: forall tTC393 tTC399 v7 %rTC0
 !eTC1 !eTC3 !eTC4 !eTC5 !eTC7 !eTS0
 $cTC3 $cTC6 $cTS0 $cTS1 $cTS2 $cTS3
 . (Int %rTC0 -(!eTC3 $cTS3)> (((v7 -(!eTS0 $cTC6)> Unit)
 -(!eTC7 $cTS1)> Unit -(!eTC5 $cTS0)> tTC399)
 -(!eTC4 $cTC3)> tTC399) -(!eTC1 $cTS2)> tTC393)
 -(!eTC0 $cTC0)> tTC393
 :- !eTC0 = !{!eTC3; !eTC1}
 , !eTC4 :> !{!eTC7; !eTC5}
 , $cTC0 = $cTC3 \ v5

v4= \v5 -> v5 23 (\v6 -> v6 (\v7 -> ()) ())

mmmm... k?

Shape constraints

• If the type of (==) required its arguments to have the same type
 ... then we couldn’t compare Mutable with Const data.

• The Shape constraint forces its arguments to have the same overall shape,
but allows their regions to vary.

(==) :: a -> a -> Bool
x :: Int %r1 :- Mutable %r1
y :: Int %r2 :- Const %r2

if x == y then ...

(==) :: a -> b -> Bool
 :- Shape2 a b

unification makes %r1 == %r2
But the result can’t be both
Mutable and Const

Explicit Laziness

• Disciple uses strict/call-by-value evaluation order by default
Laziness in introduced explicitly. Thunks are forced implicitly.

• Lazy and Direct objects are interchangeable.
Knowing that an object will never be a thunk is a big win for optimisation.

mapLS :: (a -> b) -> [a] -> [b]
mapLS f [] = []
mapLS f (x:xs) = (:) (f x) (mapLS @ f xs)

mapLE :: (a -> b) -> [a] -> [b]
mapLE f [] = []
mapLE f (x:xs) = (:) (f @ x) (mapLE f xs)

(LS == lazy spine)

(LE == lazy elements)

Purification of effects

• Suspending a function application purifies its visible effects.

suspend1 :: forall a b !e1
 . (a -(!e1)> b) -> a -> b
 :- Pure !e1, LazyH b

succ :: forall %r1 %r2
 . Int %r1 -(!e1)> Int %r2
 :- !e1 = !Read %r1

lazySucc :: forall %r1 %r2
 . Int %r1 -> Int %r2
 :- Const %r1, Lazy %r2

lazySucc x = suspend1 succ x

Closures track data sharing

fun :: forall %r1 %r2
 . () -> () -($c1)> (Int %r1, Int %r2)
 :- $c1 = x : %r2

fun ()
 = let x = 5
 inner () = (23, x)
 in inner

fun2 :: forall %r1
 . () -($c1)> (Int %r1, Int %rS)
 :- $c1 = x : %rS

fun2 = fun ()

‘x’ is shared between calls to inner

%rS is not quantified in the type for fun2.
it has global lifetime

Some type rules...

Demos

